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Summary 

Metastatic cancers often respond to treatment initially but almost universally escape therapeutic 
control through molecular mechanisms intrinsic to tumor cells, as well as extrinsic influences 
from immune cells, stroma, and structural microenvironments. We explore the extent to which 
we can learn these mechanisms and associated therapeutic vulnerabilities by linking 
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comprehensive molecular and multiscale imaging analyses of tumor biopsies to detailed clinical 
information for a patient with metastatic breast cancer. Our analyses of three serial biopsies 
include DNA, RNA, and protein profiling, plus quantification of tumor microenvironment 
composition using multiplex immunostaining and electron microscopy. Features from these 
analyses are linked to treatments and treatment-response measurements, including CT and 
PET images, circulating tumor DNA and tumor protein levels in blood, and treatment-limiting 
readouts of blood counts and liver function. Importantly, the measurement modalities unique to 
this study complemented routine diagnostics to suggest actionable mechanisms of response 
and resistance for each treatment phase. 

Keywords 
metastatic breast cancer, precision oncology, personalized medicine, human tumor atlas.  

Introduction 

Precision Medicine is an approach to disease management in which treatments are selected 
based on the presence of one or more molecular, environmental, or lifestyle features that are 
associated in cohort studies with a positive therapeutic response. Applied to cancer, this 
approach has led to substantial improvements in outcomes for a subset of patients by using 
powerful analytical procedures to select patients carrying biomarkers whose presence is 
associated with an increased likelihood of responding. These biomarkers can be genomic or 
epigenomic abnormalities that activate signaling pathways on which cancers depend for 
survival, regulatory networks that control therapeutically-vulnerable cancer “hallmarks”, 
microenvironmental architectures, or immune dysfunctions that can be rectified by treatment 
with checkpoint inhibitors or immune stimulators. 

Unfortunately, treatments deployed according to precision medicine principles do not always 
elicit positive responses even in patients with guiding biomarkers, and durable control is not 
achieved for the majority of patients with metastatic cancer. We posit that the failure to control 
individual cancers using biomarker-guided treatments stems from our imperfect understanding 
of critical aspects of individual tumors and the patients in which they manifest. These 
mechanisms may involve regulatory networks intrinsic to tumor cells, chemical and mechanical 
signals from proximal or distal microenvironments, and/or aspects of immune system 
dysfunction. These mechanisms may vary between patients, across metastases within a 
patient, and among tumor cell subpopulations within a single lesion, and they may change 
during treatment. 

We describe here our efforts to identify these mechanisms through a robust N-of-1 analysis of a 
patient with metastatic, hormone receptor-positive breast cancer. We used a diverse array of 
molecular, microscopic, and quantitative techniques to analyze this patient’s primary tumor and 
three metastatic lesions in three therapeutic phases over 42 months, and the data were linked 
to multiple clinical parameters. The resulting data and integrative analyses were then used to 
generate an Omic and Multidimensional Spatial (OMS) Atlas comprised of the combined clinical 
and tumor biological data. The clinical data include 1) precise information about drug doses, 
treatment times, and mechanisms of action; 2) therapeutic efficacy measures that approximate 
tumor size by computed tomography (CT) and metabolic activity by fluorodeoxyglucose-positron 
emission tomography (FDG-PET); and 3) tumor protein biomarkers and circulating tumor DNA 
(ctDNA) levels in blood. The tumor biological data together describe the cellular and molecular 
composition and organization of the multiple biopsies, and include: 1) comprehensive DNA, 
RNA, and protein profiles; 2) molecular signaling pathways and transcriptional regulatory 
networks; 3) immune, stromal, and tumor cell composition and organization; and 4) 2D and 3D 
subcellular and extracellular ultrastructure. Both the clinical and biological studies were carried 
out under the Serial Measurements of Molecular and Architectural Responses to Therapy 
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(SMMART) program at Oregon Health & Science University (OHSU; (Mitri et al., 2018)) with 
support from the Human Tumor Atlas Network (HTAN; (Rozenblatt-Rosen et al., 2020)). All the 
data are available through the HTAN Data Coordinating Center (https://humantumoratlas.org/) 
to encourage community participation and further analysis. 

In the following sections, we describe the resulting integrative OMS Atlas in which data from 
metastatic tumors from a single patient are compared to each other and to other breast tumors 
in The Cancer Genome Atlas (TCGA). We include the clinical and experimental workflows used 
to acquire and manage the data and highlight patterns of non-linear clonal evolution that 
generated clinically-relevant genetic heterogeneity among biopsies. We also describe how our 
multi-faceted analytical approaches revealed aspects of the tumors’ cellular and subcellular 
compositions and organizations that inform on cancer biology and therapeutic response, and we 
present examples of putative response and resistance mechanisms by comparing lesion 
characteristics and quantitative response metrics to published biomedical literature and datasets 
catalogued by the TCGA and HTAN. To our knowledge, this is the most comprehensive 
analysis of the response of a human cancer to treatment that has been generated to date. We 
show the feasibility of generating a wealth of omic and multiscale image data on individual 
biopsies rapidly enough to influence the treatment of a patient and the value of considering drug 
treatments as tumor perturbations that can inform on mechanisms of response and resistance. 
Finally, our results reveal a strategy that can be used to achieve more durable and tolerable 
control of metastatic cancers by quickly adjusting treatments to counter resistance mechanisms 
as they arise. Overall, we demonstrate an approach to Personalized Medicine in which the 
knowledge gained from decades of fundamental cancer biology and precision medicine are 
applied to the treatment of an individual cancer patient. 

Results 

Workflows for the implementation of Personalized Medicine. 

We established the SMMART program and HTAN workflows for rapid collection and 
interpretation of information about treatments, tumor responses, and the molecular and cellular 
characteristics of tumor lesions in ways that can support clinical decision making and 
mechanistic discovery (Figure 1). All patients in this program consent to participate in the IRB-
approved observational study Molecular Mechanisms of Tumor Evolution and Resistance to 
Therapy (MMTERT). Manual and automated abstraction of clinical metadata from the patient’s 
medical record include precise information about treatment times and doses for each drug or 
radiation treatment, as well as indicators of response from anatomic imaging. 

Biospecimens prospectively collected include recurring blood draws and core needle biopsies, 
whereby biopsy tissue is divided and preserved for each downstream assay within two to five 
minutes of removal from the patient. Biospecimens are used for both clinical analytics, which 
are performed in a CLIA-certified/CAP-accredited laboratory and are available to support clinical 
decision-making, and exploratory analytics, which are performed in academic research 
laboratories or core facilities. We integrate several software applications to create a robust 
computational platform for management of biospecimens as well as analysis and visualization of 
the resultant clinical and analytic data. Biospecimens are tracked and managed using a custom 
implementation of the LabVantage laboratory information management system. The LabKey 
system (Nelson et al., 2011) has been extended to store and visualize both clinical data and 
results from analysis workflows. The Galaxy computational workbench (Afgan et al., 2018) is 
used to create and run multi-step analysis workflows that process raw omics and imaging 
datasets. The OMERO system (Allan et al., 2012) is used to visualize multiplex imaging and 
electron microscopy datasets and associated metadata. Ultimately, patient information, clinical 
assay results, and analyses are presented to a multi-disciplinary clinical tumor board charged 
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with providing precision medicine-based recommendations for combination therapies. Final 
treatment selection is at the discretion of the treating physician and patient. 

An integrated clinical, omic, and multiscale image atlas of metastatic breast cancer responses to 
treatment. 

The focus of this study is a female who was diagnosed with hormone receptor-positive, HER2 
normal right breast ductal carcinoma at the age of 64. She underwent a lumpectomy with intra-
operative radiation therapy followed by treatment with four cycles of adjuvant docetaxel and 
cyclophosphamide chemotherapy. She then received two years of anastrozole treatment, 
followed by exemestane for five years. At that time, an ultrasound prompted by persistent 
abdominal discomfort revealed at least three liver masses, suggestive of metastasis. Staging 
CT scans revealed widespread metastatic disease involving mediastinal lymph nodes including 
the hila bilaterally, lung parenchyma, liver, spleen, right adrenal gland, retroperitoneal lymph 
nodes, and likely skeleton. An FDG-PET bone scan was positive for metastatic bone disease. 
The patient was then enrolled in the SMMART program and consented to the MMTERT 
observational study (see Methods). 

We developed a comprehensive omic and image-based atlas that captured the evolution of this 
metastatic breast cancer as the patient was treated with combinations of drugs in three phases 
over a 42-month period. All treatment phases included at least one drug to reduce proliferation. 
Phase 1 consisted of palbociclib, everolimus, and fulvestrant. Phase 2 consisted of doxorubicin 
and pembrolizumab. Phase 3 consisted of enzalutamide, capecitabine, fulvestrant, and the 
continuation of pembrolizumab. Temporary tumor control was achieved in all three phases, with 
a new phase of therapy beginning upon signs of progression. 

This OMS Atlas links clinical metadata (Table S1) such as detailed treatment doses and 
timelines (Figure 2A) to tumor response measurements, including frequent measures of CEA, 
CA 15-3, and CA 27-29 serum tumor protein biomarker levels (Figure 2B) and lesion size and 
location estimates from periodic CT and FDG-PET scans (Figure 2C). Figure S1 shows 
representative CT, FDG-PET, and ultrasound images from key timepoints during this study. 
Figure S2 links the therapeutic timeline to toxicity-related blood cell composition and liver 
function measurements as well as ctDNA abundance. 

Execution of the workflow described above enabled a detailed assessment of blood, tumor, and 
tumor microenvironment responses to the three phases of treatment. A liver biopsy was taken 
before Phase 1 began (Bx1, Liver lesion 8, Figure 2C); a biopsy of a different liver lesion was 
taken at the end of Phase 1 (Bx2, Liver lesion 9, Figure 2C); and a bone biopsy was taken at 
the end of Phase 3 (Bx3, lesion not visible by CT). The end of treatment biopsies (Bx2 and Bx3) 
were performed with the goal of capturing samples from lesions that were progressing while still 
on therapy (Figure 2A). 

The molecular profiles of each biopsy generated through extensive omics and imaging assays 
provided a window into the mechanisms of resistance that enabled the disease to escape from 
treatment. They also documented the heterogeneity of the cancer, its evolution, and new 
therapeutic vulnerabilities that arose as the cancer evolved. Figures 3-6 summarize the results 
from ten distinct omic and multiscale spatial imaging assays that were used, where tissue 
allowed, for analyses of the primary tumor and three tumor biopsies. Table S1 includes clinically 
reported results of immunohistochemistry (IHC) staining. Analyses summarized in Figures 3 and 
S3 highlight the differences between biopsies in genetic alterations, gene expression, protein 
levels, and computed pathway activities. Figures 3A and 3B summarize the results of DNA 
analyses used to identify mutations and copy number alterations in a clinically curated panel of 
cancer genes (GeneTrails® Solid Tumor Panel) and by whole exome sequencing (WES). 
Figures S2E and S3A summarize the results of whole exome and Dual Index Degenerate 
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Adaptor Sequencing (DIDA-Seq) of ctDNA from serial blood samples (Butler et al., 2019). 
Figure 3 also summarizes the results from RNA sequencing (RNAseq) to characterize the whole 
transcriptome (Figure 3C), reverse phase protein arrays (RPPA) to profile the abundance of 450 
proteins and phosphoproteins (Figures 3D, 3F; (Chen et al., 2019; Labrie et al., 2019a)), and a 
clinical multiplex protein analysis (Intracellular Signaling Protein Panel) of 22 cancer proteins 
and phosphoproteins (Figure 3E; (Lee et al., 2018)). Computed pathway activity was estimated 
by assessing proteomic pathway signatures (Labrie et al., 2019a), total or phosphoprotein 
abundance levels, transcriptomic gene set variation analysis (GSVA; (Hanzelmann et al., 2013; 
Liberzon et al., 2015)), and transcriptional regulator networks (see Methods). Transcript and 
protein levels as well as pathway activity estimates for the three biopsies were compared to 
other breast cancers from a TCGA cohort (TCGA BRCA; Table S2; (Cancer Genome Atlas, 
2012)). Integrative analyses, including multi-omic pathway analysis, were used to explore 
relationships and compare changes across gene expression, transcriptional regulator activities, 
and protein/phosphoprotein levels between the biopsies (Figures S3D, S3E). Figures 4 and S4 
show changes between the primary tumor and three metastases in the composition and 
functional status of individual leukocyte lineages using multiplex immunohistochemistry (mIHC; 
(Banik et al., 2020; Tsujikawa et al., 2017; Tsujikawa et al., 2019)). Figures 5 and S5 assess 
tumor and microenvironment cellular composition, functional state, and spatial organization 
using cyclic immunofluorescence (CycIF; (Eng et al., 2020; Lin et al., 2015)) and focused ion 
beam-scanning electron microscopy (FIB-SEM; (Riesterer et al., 2020)), highlighting differences 
between the metastatic lesions. Figures 6 and S6A show additional two-dimensional (2D) and 
three-dimensional (3D) cellular and subcellular features, with potential therapeutic relevance 
revealed using FIB-SEM. 

This OMS Atlas is deep rather than broad, focusing on a single patient over time. As an N-of-1 
study, we could not use population-based statistical approaches to identify features significantly 
associated with therapeutic response and resistance. Instead, we used three different 
approaches to link this patient’s molecular features to putative mechanisms of response and 
resistance. First, patient data were combined with curated datasets, such as TCGA, to identify 
tumor features that were unusually high or low compared to cohorts of similar patients. These 
unusual features provide a starting point for understanding what is unique in the biopsied lesion 
that may be driving its behavior. Second, we connected molecular features to therapeutic 
responses reported in domain literature and databases, such as the G2P meta-knowledgebase 
that associates somatic variants found in six prominent cancer variant knowledgebases with 
prognosis and response to therapy (Wagner et al., 2020), and curated networks obtained from 
the Pathway Commons database (Rodchenkov et al., 2020). Third, we identified features that 
changed between biopsies taken pre-treatment versus on-progression as candidate resistance 
mechanisms. We assigned high confidence to mechanism-associated features that were 
implicated by several independent approaches. Details of the assays and selected results 
related to aspects of tumor treatment are described in the following sections in order to 
elucidate potential mechanisms of response and resistance. 

Genomic evolution between biopsied lesions was substantial. 

We performed a comparative analysis of WES data from the primary tumor and three 
subsequent metastatic biopsies to understand the genomic heterogeneity and evolutionary 
trajectory of these lesions. A common set of copy number abnormalities was present in all three 
biopsies, including an amplification on chromosome 11 encompassing the CDK4/6 binding 
partner cyclin D1 (CCND1; Figure S3B), indicating that each biopsied lesion site arose from a 
common ancestral cell clone. Likewise, a subset of somatic mutations was identified across all 
four biopsies (Ubiquitous; Figures 3A, S3A). There was also a set of mutations unique to each 
lesion (Private), as well as a set of variants common to Bx1 and Bx2 (Shared) but absent from 
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Bx3. This heterogeneity between biopsies included differences in biologically-relevant 
mutations. For example, Bx2 contained a hotspot PIK3CA mutation (p.E542K; 
NM_006218:c.1624G>A), that was absent from the primary tumor, Bx1, and Bx3. This is a 
known pathogenic mutation, and its absence from Bx3 later in the course of this patient’s 
disease indicates a non-linear pattern of genomic evolution between the sequential biopsies. To 
understand the pattern of clonal evolution that gave rise to the heterogeneity between the three 
biopsied metastatic lesions, we used the mutations identified from WES to construct a 
phylogenetic tree (Figure 3B). Interestingly, this analysis revealed a pattern of branching clonal 
evolution in which Bx3 diverged from the primary tumor at an earlier evolutionary timepoint than 
Bx1 and Bx2. The Bx3 metastatic lesion was not tracked by CT imaging due to its anatomical 
location in the spine but first appeared on FDG-PET imaging just one month before Bx3 (Figure 
S1G), being absent from all prior FDG-PET scans (Figures 2, S1A, S1F). These data therefore 
indicate that the chronological time of emergence of a detectable lesion may not be strictly 
related to the evolutionary history of the clone. 

Bx3 was acquired from a bone lesion that progressed during combination treatment in Phase 3 
with enzalutamide, pembrolizumab, fulvestrant, and capecitabine (Figure 2A). While WES did 
not identify any driver mutations private to Bx3 that would explain the clinically late outgrowth of 
this evolutionarily early tumor, it did reveal a focal, 2.3 MB, 8-copy genomic amplification on 
chromosome 18 (18p11.32), encoding thymidylate synthetase (TYMS) and the SRC family 
tyrosine kinase YES1 that was not identified in prior biopsies or the primary tumor (Figures 3B, 
S3B). This amplification on chromosome 18 was accompanied by increased RNA expression of 
TYMS (3.6 log2 fold) and YES1 (1.3 log2 fold), indicating functional consequences of the copy 
number increase. TYMS, which catalyzes the conversion of dUMP to dTMP, is the molecular 
target of the capecitabine metabolite FdUMP, and its over expression has been reported as a 
resistance mechanism to this agent (Marangoni et al., 2018). This indicates that the 
TYMS/YES1 amplification may have given Bx3 a relative fitness advantage under the selective 
pressure of capecitabine treatment, providing a potential explanation for the temporally late 
emergence of a clone that branched off early in the evolutionary process (Figure 3B). YES1 can 
be inhibited by the broad-spectrum kinase inhibitor dasatinib revealing a possible therapeutic 
strategy to counter resistance mediated by this amplification. 

Genomic differences between the biopsies could be due to pre-existing genetic heterogeneity 
between metastases or to branching clonal evolution during therapeutic treatment. To 
discriminate between these possibilities, we performed WES on ctDNA collected immediately 
prior to Bx1 (ctDNA 1) and 23 days after Bx2 (ctDNA 2). We detected mutations previously 
identified as private to each of the biopsies (Figure S3A) at both ctDNA collection timepoints, 
indicating pre-existing genomic heterogeneity between metastases, with clones carrying 
advantageous alterations subsequently selected for by specific treatments. 

Circulating tumor DNA increases coincided with both tumor progression and radiation therapy. 

Disease progression and response over the first 32 months of treatment following enrollment in 
the study was also assessed by monitoring ctDNA levels from serial blood samples using DIDA-
Seq for a panel of 53 single-nucleotide variants (SNVs) that were present in the patient’s 
primary tumor and first two metastatic biopsies (Butler et al., 2019). The average variant allele 
frequency (VAF) of the panel of SNVs remained consistently below 0.3% of the total cell free 
DNA in the blood during this period, with the exception of two transient increases (Figure S2E). 
The first occurred immediately prior to Bx2, coincident with rising CA 15-3 and CA 27-29 and 
increasing radiographic size of several metastases, including the Bx2 liver lesion (Figures 2B, 
2C, S2E). The increase in ctDNA VAF was greatest for the mutations that were common to the 
primary tumor and first two biopsies (Bx1_Bx2_Primary, 30% VAF) compared to those private to 
the metastases (Bx1_Bx2, 3.1%; Bx1, 0.05%; Bx2, 1.3%; Figure S2E). We hypothesize that this 
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variation in VAFs reflects mutational heterogeneity among the diverse metastatic lesions (Figure 
2C). The second ctDNA level increase occurred after the patient began a course of palliative 
radiation therapy to spinal lesions at C2-C5. Interestingly, the VAFs of all SNV groups in the 
panel increased at this time, including those private to liver lesions Bx1 and Bx2. One possible 
explanation for this observation is an immune-mediated abscopal radiation effect on lesions 
both inside and outside the irradiated field (Liu et al., 2018). The detection of most ubiquitous 
mutations in the ctDNA as well as many private to Bx1 and Bx2 reaffirms the utility of the assay 
in detecting the emergence of clones carrying resistance-associated mutations before they grow 
to become a dominant population. Intriguingly, our observation that radiotherapy appears to 
have induced a transient increase in ctDNA abundance provides perhaps an opportunity to 
profile heterogeneous disease by liquid biopsy in patients who undergo radiation therapy for 
clinical need. 

Exploration of cellular and molecular composition and organization. 

It is well established that interactions between tumor and microenvironmental cells can 
significantly influence treatment outcomes, for example, by forming physical barriers that hinder 
drug and immune cell access or by providing chemical and mechanical signals altering the 
tumor cell drug responses and/or immune cell activity (Hanahan and Coussens, 2012). We 
mapped cellular states and inter- and intracellular interactions that might have influenced the 
observed therapeutic responses, using a combination of mIHC, CycIF, and FIB-SEM. 

Immune monitoring using mIHC illustrates opportunities to increase immune surveillance. 

To quantitatively evaluate composition and functionality of lymphoid and myeloid lineage cells in 
the primary tumor and three metastatic biopsies, we used a mIHC platform for iterative 
immunodetection with 23-36 antibodies reporting leukocyte lineage and effector functionality on 
FFPE tissue specimens, followed by a computational analysis workflow (Figure 4; Table S2) 
(Banik et al., 2020; Tsujikawa et al., 2017; Tsujikawa et al., 2019). These analyses revealed a 
modest increase in CD45+ immune cells in Bx1 compared to the primary tumor, a reduction in 
Bx2, and an ~8-fold expansion in Bx3 (Figures 4A, 4B). Analyses of the major leukocyte 
lineages revealed that macrophages and monocytes comprised the dominant lineage subgroup 
in all samples except Bx3 (Figure 4C). In deeper analysis of the myeloid lineage relative to Bx2, 
Bx1 contained a larger percentage of immature dendritic cells, whereas Bx2 contained 
increased proportions of macrophages and monocytes, with the largest increase in CD163+ 
macrophages in Bx2 (Figures 4C, 4D). CD163 positivity has been associated with differentiation 
of myelomonocytic cells towards an alternatively-activated or “M2’ type state, an event 
considered to be pro-tumorigenic within solid tumors (Barros et al., 2013). CD163 expression on 
monocytes and macrophages is induced by IL-10 and glucocorticoids and repressed by 
lipopolysaccharides TNFα, and IFNγ (Buechler et al., 2000). Consistent with increased CD163 
positivity, Bx2 had enriched expression of the GSVA transcriptional pathways “BioCarta IL10 
Pathway”, “Reactome Interleukin 10 Signaling”, and “GO Glucocorticoid Receptor Binding”; 
however, pathways that negatively regulate CD163 were also enriched, including “GO 
Lipopolysaccharide Receptor Activity”, “TNFA Signaling Via NFKB”, and “Interferon Gamma 
Response” (Figure 3C; Table S2). 

Assessment of the T cell compartment indicated variable presence of total CD3+ T cells: Bx2 
contained fewer T cells than Bx1, but these were further increased (relatively) in Bx3 as 
compared to Bx2 (Figure 4E). The primary tumor contained a higher percentage of CD3+CD8+ T 
cells than CD3+CD4+ helper T cells, which was not observed in any of the biopsies (Figure 4E). 
Only a small fraction of CD3+CD4+ and CD3+CD8+ T cells in either the primary or Bx1 tumor 
expressed the programmed cell death-1 (PD-1) protein, typically expressed on activated T cells 
following persistent antigen exposure (Figure 4F; (Pauken and Wherry, 2015)). From a 
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treatment perspective, low expression of PD-1 and low overall abundance of CD3+CD8+ T cells 
and CD163+ macrophages in the primary tumor and Bx1 likely indicate that neither had initiated 
a T cell-mediated immune response. Thus, in Bx1 there was little evidence to support the utility 
of checkpoint inhibitors targeting the PD-1/PD-L1 axis in Phase 1.  

The T cell status was markedly altered in Bx2 (Figures 4C, 4G, 4H). Notably, while T cells were 
less abundant in Bx2 compared to Bx1, a larger fraction of CD3+CD4+ and CD3+CD8+ T cells 
expressed PD-1 in Bx2 (Figure 4F) coincident with a relatively reduced presence of 
FoxP3+CD4+ Tregs and expanded population of Th17 CD4+ T cells (Figure 4H). Th17 T cells 
and Tregs arise from a common precursor but with opposing functionality upon terminal 
differentiation, with Th17 cells promoting and Tregs dampening antitumor immunity 
(Knochelmann et al., 2018). Interestingly, there are reports indicating that anti-estrogens also 
inhibit CD4+CD25+ Treg differentiation (Adurthi et al., 2017; Tai et al., 2008). Using PD-1 and 
eomesodermin (EOMES) expression to further audit CD8+ T cell functional status, we found that 
EOMES- populations were expanded in Bx2, whereas PD-1-EOMES+ cells were reduced (Figure 
4G). EOMES is a T-box transcription factor that regulates protein expression for T cell memory 
and upregulates T cell inhibitory receptors; however, in some tumors (liver), dysfunctional T 
cells exhibit reduced EOMES (and T-bet) expression (Schietinger et al., 2016), thus also 
supporting the hypothesis that dysfunction of these T cells might be arrested by PD-1-blockade. 

The immune ecosystem changed again dramatically between Bx2 and Bx3; yet, it is important 
to note a change in location of the metastasis from liver to bone. The dominance of CD163+ 
myeloid cells was greatly reduced, replaced with granulocytes, dendritic cells, and an expansion 
of CD20+ B cells and CD3+ T cells. Both CD3+CD4+ and CD3+CD8+ T cells displayed PD-1 
expression, potentially indicative of their recent activation but not necessarily indicative of 
effective anti-tumor functionality. Further, granulocytes, encompassing basophils, eosinophils, 
and neutrophils, were also expanded in presence. Neutrophils in particular can harbor 
suppressive effects on T cells and are associated with poor prognosis in many solid tumors, 
including breast cancer (Hanahan and Coussens, 2012). Moreover, a high neutrophil-to-
lymphocyte ratio (NLR) has been found to be a poor prognostic indicator in breast cancer 
(Ethier et al., 2017). Although Bx3 displayed an NLR of ~0.8 (data not shown), which is not 
classified as high (1.9-5 range), suppressive activity could be present. Further, only 4.7% of the 
dendritic cells in Bx3 expressed DC-LAMP/CD208, a lysosomal protein involved in processing 
and presenting antigen and indicative of DC maturation, which is necessary for naïve T cell 
priming. Thus, lack of support for existing T cells or active suppression likely contributed to 
disease progression. The existence of immature DCs present therapeutic avenues to pursue, 
including the opportunity to drive DC maturation with alternative forms of immune therapy, such 
as GM-CSF vaccination (GVAX), DC agonists including CD40, and small molecule inhibitors 
including JAK/STAT and MAPK inhibition, and/or “re-invigorating” T cells (Wculek et al., 2020). 

Tumor and stromal responses to therapy revealed using CycIF. 

We used a CycIF analysis platform with probes for 20 proteins as previously described (Eng et 
al., 2020; Lin et al., 2015) to assess the tumor and stromal composition and organization of all 
three biopsied metastatic lesions (Table S2). To enable subpopulation analysis within the 
context of known biology for this luminal breast cancer (Figure S3C), we included control 
biospecimens prepared from normal breast tissue, tonsil, an unrelated luminal HER2 breast 
cancer, and six cell lines representing basal (HCC1143, HCC3153), claudin-low (MDAMB436), 
luminal (T47D), and HER2 positive (BT474, AU565) breast cancers. Collective analyses of 
these tissues and cell lines defined three stromal and eight tumor subpopulations (Figures 5A, 
5C, S5A). Three of the stromal clusters (clusters 3, 4, and 7) and three of the tumor clusters 
(clusters 6, 9, and 10) were represented as major subpopulations in Bx1, Bx2, and Bx3 (Figures 
5C, S5A). The stromal clusters were identified as endothelial cells expressing CD31, fibroblast-
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like cells expressing high levels of VIM/aSMA, and immune cells expressing CD45, CD4, CD8, 
and/or CD68. The tumor clusters were identified as expressing CK7/CK19, with differential 
expression of ER, PCNA, and Ki-67. Comparative analyses of the biopsies showed that the 
fraction of tumor cells expressing high levels of ER and PCNA (cluster 10) increased in Bx3 
(Figure 5C), possibly reflecting an increase in PCNA dependent DNA repair (Li et al., 1994). Of 
course, differences between the anatomical locations of Bx3 (bone, Figure S1A) and Bx1 and 
Bx2 (liver, Figures S1F, S1G) could also explain differences between these metastases. 

Visual review of the CycIF images revealed a reduced tumor-to-stromal cell ratio in Bx2 
compared to Bx1 and Bx3 (Figures 5B, S5B) that was reflected in a cellular composition 
analysis (Figure S5C). Interestingly, Bx2 also displayed the highest subpopulation cluster 
heterogeneity among the biopsies (Figure S5C). The lower metabolic activity of stromal cells in 
Bx2 compared to Bx1 likely explains why FDG-PET activity decreased after Bx2, while lesions 
sizes measured by CT decreased only modestly (Figures 2C, S1F). Quantitative measures of 
distances from each tumor cell to the nearest macrophage, T cell, endothelial cell, and fibroblast 
showed differences between the stromal cell types (Figure 5D). Fibroblasts were in close 
proximity to tumor cells in all biopsies, thereby presenting the opportunity to impact therapeutic 
response (Paraiso and Smalley, 2013). Endothelial cells were in closer proximity to the tumor 
cells in Bx2 than Bx1 and in closer proximity in Bx3 than Bx2. In Bx3, the tumor cells were as 
close to the endothelial cells as to the fibroblasts. Macrophages were slightly farther from tumor 
cells than the fibroblasts were to tumor cells in Bx1 and Bx2 but were generally several cell 
diameters away from tumor cells in Bx3. T cells, on the other hand, were located many cell 
diameters from the nearest tumor cell in all biopsies, thereby reducing the probability of T cell 
mediated cell killing in all biopsies. 

Visual analysis also revealed that the endothelial, fibroblast, and immune cells were co-localized 
in each biopsy and spatially organized around but excluded from neoplastic tumor cells, which 
themselves were organized in nests (Figure 5B). This architecture possibly formed a chemical 
and mechanical barrier to chemical and immune attack and was explored further using FIB-SEM 
as described below. 

Therapy related inter- and intracellular compositions and interactions revealed using FIB-SEM. 

We explored the ultrastructure of inter- and intracellular interactions in large format 2D and 
targeted 3D images acquired using FIB-SEM as previously described (Riesterer et al., 2020), 
with emphasis on aspects of nanobiology that might affect therapeutic response. Computational 
renderings of the 3D images were particularly informative in Bx1 (Movies S1, S2) and Bx2 
(Movie S3). Insufficeint material was available from Bx3 to allow EM analysis. 

The ~4 nanometer resolution 3D FIB-SEM Movie S3 and selected views in Figure 5E reveal 
details of intercellular interactions between tumor and stromal cells that cannot be appreciated 
from images generated using light microscopy. These images confirm the organization of 
stromal cells around tumor clusters in Bx1 and Bx2 (Figures S6A, 5E). However, they reveal an 
intricate interaction pattern between tumor and stromal cells that indicates the stromal barrier 
may be formed as a result of active communication between the tumor and stromal cells. The 
3D images show a remarkable degree of biological and mechanical heterogeneity that should 
be assessed for functional impact in experimental models. In particular, these images show the 
robust manifestation of ~100 nm diameter, micrometers long filopodia-like protrusions (FLPs) 
that appear to establish interactions between tumor cells and between the tumor and the 
stromal microenvironment (Figure 6A-C, Movie S2). The abundance of FLPs is somewhat 
increased in Bx2 compared to Bx1 (Figure 6G, Movies S1-3). Published work (Kerber and 
Cheney, 2011) and our own studies in model systems show that these protrusions have an 
actin-rich core, are decorated with receptor tyrosine kinases, and are dependent on the actin-
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motor protein Myosin-X encoded by the gene MYO10. Dynamic in vitro images acquired using 
stochastic optical reconstruction microscopy (STORM) show that cultured SKBR3 breast cancer 
cells respond to cytokines like EGF by rapidly decreasing protrusion length in ways that cause 
cells to move toward the anchored ends of the protrusions (Figure S6B, Movie S4). This 
indicates the possibility of protrusion-mediated signaling whereby the long and dynamic FLPs 
could mediate both proximal and distal interactions and directed movement. Published studies 
also suggest the possibility that FLPs mediate protein transport between cells (Desir et al., 
2018). 

The 3D movies of FIB-SEM images of cancer cells in Movies S1-3 also provide important 
information about intracellular structures and interactions that may influence cell function and 
therapeutic response. For example, Movie S2 and Figures 6A and 6D from Bx2 show 
mitochondria aligned along the length of an elongated cell and insinuated into nuclear folds, 
thereby increasing the potential for nuclear-mitochondria signaling. The resulting increased 
mitochondria-nucleus proximity might alter aspects of DNA damage repair and/or ROS signaling 
(Ogawa and Baserga, 2017; Saki and Prakash, 2017). We speculate that the alignment of the 
mitochondria along the long axis of the cell and the close association of mitochondria with the 
nucleus resulted from forces generated as the cells moved through a dense microenvironment, 
as suggested by the dynamic model system studies described above and illustrated in Figure 
S6B and Movie S4. 

Movies S1 and S2 and Figures 6C, 6E, and 6F depict a high abundance of lamellipodia and 
macropinosomes, indicating nutrient scavenging via macropinocytosis as a possible tumor 
survival mechanism (Commisso et al., 2013; Hosios et al., 2016). Macropinocytosis is a non-
selective endocytosis process that enables the uptake of nutrients and proteins from the 
intercellular space, including those from nearby dying cells (Commisso et al., 2013). Uptake is 
mediated by actin-rich lamellipodia that engulf and internalize extracellular materials. This 
process has been implicated as a survival mechanism in Ras-transformed cells in amino acid-
poor environments (Palm et al., 2015), and it is noteworthy that the GSVA Cancer Hallmark 
gene set “KRAS Signaling Up” and multiple Reactome gene sets for amino acid biosynthesis 
are enriched in Bx2 (Figure 3C; Table S2). We speculate that drug uptake by macropinocytosis 
might explain the strong response to liposomal doxorubicin during Phase 2 treatment.  

Movies S1 and S2 and Figure 6E show a high prevalence of densely stained vesicles in Bx2 
that appear to be lysosomes, in contrast to the smaller electron-lucid macropinosomes. These 
acidic vesicles are known to accumulate weak bases, including some cancer drugs, via a 
process called lysosomotropism. In this process, basic drugs become protonated and trapped 
within the acidic interior of lysosomes (Villamil Giraldo et al., 2014). Analysis of 2D EM images 
show that the frequency of these vesicles is qualitatively higher in Bx2 compared to Bx1 
(Figures 6G, S6A), and, as discussed below, may be contributing to an attenuated response to 
small-molecule therapeutics at the time of this biopsy. 

Figure 6G presents a qualitative summary of the prominence of the nanoscale features 
described above in Bx1 and Bx2 made by visual analysis of large format 2D SEM images 
(Figure S6A) and informed by 3D FIB-SEM images of selected features as described above. 

Mechanisms of therapeutic response and resistance revealed by integrative analyses. 

The diverse clinical and experimental data collected from serial biopsies taken during the course 
of treatment are intended to support integrative analyses that reveal mechanisms of resistance 
and response. Full exploration of these mechanisms is beyond the scope of this paper. Instead, 
we present illustrative results from a comparative analysis of Bx1 (taken prior to Phase 1 
treatment) versus Bx2 (taken upon progression on Phase 1 treatment) that demonstrate the 
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extent to which resistance and response mechanisms to Phase 1 treatment with palbociclib, 
everolimus, and fulvestrant (Figure 2A) can be understood. 

Evidence for tumor growth despite continued drug target suppression at the time of Bx2. 

The overall tumor burden and the lesion sampled in Bx2 initially regressed by radiological 
imaging (Figure 2C) and assessment of blood biomarkers (Figure 2B) on Phase 1 treatment but 
then began progressing after about 6 months. Bx2 was taken approximately 9 months after 
Phase 1 treatment began (Liver lesion 9, Figures 2C, S1E). Despite the increasing size of this 
lesion, the cell proliferation marker Ki-67 was reduced in Bx2 compared to Bx1 (20.7% vs. 25.9-
31%; Table S1), and RNA and protein analyses derived from Bx2 indicated that pathways 
targeted by these drugs were downregulated. For example, MSigDB Cancer Hallmarks derived 
from GSVA of RNA expression showed that “Estrogen Early,” “Estrogen Late,” “E2F Targets”, 
and “MTORC1” pathways were decreased in Bx2 relative to Bx1, indicating continued activity of 
fulvestrant, palbociclib, and everolimus, respectively (Figure 3C). Moreover, decreases in 
CDK4, CDK6, and E2F1 transcriptional regulator activities (Figures S3D, S3E; Table S2) and 
the RPPA cell cycle protein pathways “G0-G1” and “G1-S” (Figures 3D, S3E) were consistent 
with response to palbociclib. Because this drug combination was no longer inhibiting this lesion, 
we used the OMS Atlas to investigate possible acquired resistance mechanisms and new 
therapeutic vulnerabilities that affect processes outside of canonical pathways. We present 
below illustrations of evidence gleaned from the OMS Atlas with the strongest connection to 
therapeutic response, acknowledging the difficulty of pinpointing the cellular and molecular 
changes to any single drug in a multi-drug regimen.  

A PIK3CA mutation may contribute to resistance to multiple Phase 1 therapies. 

We identified a PIK3CA p.E542K mutation in Bx2 that was not detected in the primary tumor, 
Bx1, or Bx3, indicating this mutation may have emerged due to selective pressure from one or 
more Phase 1 therapies. Indeed, this variant was among the SNVs monitored in serial blood 
samples by DIDA-Seq (Figure S2E) and was only detected in the ctDNA significantly above 
background after month 7 (0.06% VAF, p=0.0071, Weitzman overlapping coefficient). This is a 
helical-domain hotspot mutation implicated in resistance to diverse agents and in multiple tumor 
types and, as described below, can affect the response to any of the three Phase 1 drugs. Bx2 
had evidence of PI3K pathway activation upstream of mTOR, including increased 
phosphorylation of AKT and AKT substrates GSK3A/B (S21/S9 phosphorylation, 1.6-fold vs. 
Bx1), TSC2 (T1462 phosphorylation, 1.4-fold), and MDM2 (S166 phosphorylation, 2.0-fold) 
(Figure 3F). While this mutation being private to Bx2 may indicate a drug resistance-related 
mechanism for its emergence, the co-administration of multiple drugs that target diverse but 
overlapping pathways made it difficult to attribute its selection to any single drug. 

Escape from everolimus through mTORC1/2 feedback loops. 

The mTORC1 complex inhibitor everolimus was chosen in Phase 1 treatment based on clinical 
trials demonstrating this drug’s efficacy in combination with endocrine therapies in treating ER 
positive metastatic breast cancer in patients who progressed on aromatase inhibitors, as was 
the case with this patient (Massarweh et al., 2014). mTORC1 is activated through inhibitory 
phosphorylation of its negative regulator TSC1/2 by the PI3K/AKT and RAS/MAPK pathways. 
This leads to multiple cell growth-promoting effects, including increased protein translation, lipid 
synthesis, and autophagy inhibition (Kim and Guan, 2019). Bx1 had evidence of mTORC1 
activation, including high levels of S6 ribosomal protein S240/244 phosphorylation (Figure 3F) 
and enriched transcriptional gene sets involved in protein translation (Table S2). Bx2 showed 
evidence for everolimus-mediated inhibition of the mTORC1 complex, including decreased S6 
phosphorylation at both S235/236 and S240/244 (0.7- and 0.2-fold vs. Bx1, respectively), as 
well as a decrease in the GSVA transcriptional Cancer Hallmark “MTORC1” (Figures 3C, 3F). 
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However, the RPPA protein pathway “TSC-mTOR” did not significantly change in Bx2 (Figure 
3D), indicating this tumor may have activated everolimus bypass mechanisms that maintain 
oncogenic signaling in the presence of this agent. 

One possible bypass mechanism is mTORC2/AKT-mediated compensatory feedback signaling, 
which is known to maintain oncogenic signaling in the presence of rapalogs, such as everolimus 
(Figure 3G; (Mi et al., 2015; O'Reilly et al., 2006)). mTORC2 is functionally distinct from 
mTORC1 and insensitive to everolimus. Bx2 had multiple markers of mTORC2 and AKT 
activation. For example, phosphorylation of AKT at S473, an mTORC2 kinase site, was 
increased in Bx2 relative to Bx1 (2.5-fold), and, as mentioned above, multiple AKT downstream 
effectors were phosphorylated (Figure 3F). AKT is also constitutively phosphorylated at this site 
in cells harboring oncogenic PI3K mutants, including PIK3CA p.E542K (Kang et al., 2005), 
indicating a role for this mutation in reducing everolimus efficacy in Bx2. The combined 
observations of decreased phospho-S6 at S240/244 and increased phospho-AKT at S473 are 
consistent with inhibition of mTORC1 and consequent compensatory activation of AKT by 
mTORC2 to maintain tumor growth in the presence of everolimus. 

Activation of CDK2 and drug sequestration via lysosomotropism may contribute to resistance to 
palbociclib. 

The cell cycle inhibitor palbociclib was given in Phase 1 treatment to counter the proliferative 
dysregulation indicated by a high frequency of Ki-67 positive tumor cells and amplification of the 
CDK4/6 binding partner CCND1 observed in Bx1 (Table S1; Figures 3B, S3B; (Spring et al., 
2020)). Palbociclib is an FDA-approved inhibitor of the cyclin D-dependent kinases CDK4 and 
CDK6 and has no significant activity against other CDKs. RB1 phosphorylation by CDK4/6 in 
early G1 and CDK2 in late G1 and early S cell cycle phases results in its release from the 
transcription factor E2F, enabling the transcription of genes that promote cell cycle progression 
(Sherr et al., 2016). Bx1 was positive for RB1 phosphorylated at S807 and S811, markers of 
high CDK4/6 kinase activity indicating possible susceptibility to palbociclib (Figure 3F). Indeed, 
serum tumor biomarkers and CT measurements decreased for the first six months on this and 
the other Phase 1 drugs (Figures 2B, 2C). However, RB1 phosphorylation at S807 and S811 
was also found in Bx2 (1.0-fold vs. Bx1; Figure 3F), indicating possible loss of palbociclib 
efficacy at this time. 

The RB1 phosphorylation observed in Bx2 while on palbociclib might have occurred via 
activation of CDK2. CDK2 activation can occur through both canonical and non-canonical 
mechanisms, each potentially involving oncogenic signaling through PIK3CA p.E542K (Figure 
3H). Canonical binding of CDK2 to cyclin E is required for the G1-S transition and is inhibited by 
the CDK inhibitor p21 (Sherr et al., 2016). Cells lacking p21 are incapable of cell cycle arrest in 
response to CDK4/6 inhibitors due to dysregulated activation of CDK2/cyclin E (Herrera-Abreu 
et al., 2016; Iida et al., 2019; Vilgelm et al., 2019). Bx2 expressed less p21 protein than Bx1 
(0.5-fold, Figure 3F), which could be due to downregulation by activated PI3K/AKT, as this 
pathway keeps p21 levels low in CDK4/6 inhibitor resistant cells (Vilgelm et al., 2019). AKT 
phosphorylation was higher in Bx2 than Bx1 (S473, 2.5-fold; T308, 1.2-fold; Figures 3F, S3D, 
S3E), possibly due to PIK3CA mutation or feedback activation of mTORC2 in response to 
everolimus. Tumor cells can also adapt to palbociclib via non-canonical binding of CDK2 to 
cyclin D1, which occurs in cells with high cyclin D1 protein levels and activated PI3K signaling 
(Herrera-Abreu et al., 2016). Bx2 had increased cyclin D1 protein levels (1.6-fold vs. Bx1; 
Figures 3F, S3D, S3E) and increased AKT activity driven by mutated PIK3CA as an additional 
palbociclib resistance mechanism (Figure 3H).  

Sequestration of palbociclib via lysosomotropism may also have contributed to reduced 
palbociclib efficacy in Bx2. This mechanism is suggested by the increase in lysosomes from Bx1 
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to Bx2 revealed by FIB-SEM (Figures 6G, S6A). Drug sequestration via lysosomotropism has 
been implicated as a mechanism of resistance to palbociclib and other CDK4/6 inhibitors, 
indicating a possible role for these abundant vesicles in reducing therapeutic efficacy in this 
patient (Fassl et al., 2020; Llanos et al., 2019). 

Signaling through the androgen receptor may enable escape from therapeutic control by 
fulvestrant. 

Fulvestrant is a selective estrogen receptor degrader that is FDA-approved in combination with 
palbociclib to treat metastatic, HR-positive breast cancer in patients who have progressed on 
prior endocrine therapies. Its mechanisms of action include competitive inhibition of estradiol 
binding and induction of an ER conformational change that leads to its proteasomal degradation 
(Wijayaratne and McDonnell, 2001; Wittmann et al., 2007). This patient had previously 
progressed on anastrozole and exemestane, was ER positive in Bx1 (> 95%; Table S1), and 
had no ESR1 mutations, making her a suitable candidate for this therapy. The absence of 
genetic alterations in ESR1 despite multiple years of prior treatment with two aromatase 
inhibitors, anastrozole (two years) and exemestane (five years), is noteworthy as resistance-
associated mutations in this gene are frequently reported in response to these drugs (Robinson 
et al., 2013; Toy et al., 2013). Bx2 showed continued ER positivity by IHC (>95%; Table S1), 
increased ER protein levels by RPPA (1.8-fold; Figures 3F, S3D, S3E), essentially all tumor 
cells expressing ER on CycIF analysis (Figure 5C, S5D), and no mutations in ESR1. None of 
these factors indicate a possible mechanism of resistance to fulvestrant. This motivated OMS 
Atlas analyses to determine possible fulvestrant-resistance mechanisms in Bx2 that were 
independent of the estrogen receptor. 

Several lines of evidence indicated androgen receptor (AR) signaling as a compensatory 
mechanism for ER pathway inhibition in Bx2. This biopsy was AR positive by clinical IHC (66%; 
Table S1), and RPPA analyses showed a dramatic increase in AR protein levels in Bx2 relative 
to Bx1 (5.5-fold; Figures 3F, S3D, S3E). In addition, transcriptional regulator activity 
measurements showed an increase in breast cancer-specific AR downstream targets (Figure 
S3D; Table S2). Interestingly, the Hormone Signaling Pathway as measured by RPPA was not 
significantly changed between these biopsies despite multiple omics analyses showing a 
decrease in ER activity and an increase in AR, providing further evidence that AR may have 
supplanted ER to maintain downstream hormone-dependent gene transcription (Figures 3C, 
3D). This could have occurred through direct transcriptional activation of common target genes, 
as many promoters with estrogen response elements also contain binding sites for AR (Need et 
al., 2012). The possibility of reliance on AR signaling in the lesion sampled in Bx2 supported 
addition of the anti-androgen enzalutamide in Phase 3 treatment (Figure 2). 

Discussion 

A key goal in the OHSU SMMART and HTAN programs is to improve treatments for metastatic 
cancers in individual patients by identifying and opportunistically acting on therapeutic 
vulnerabilities and mechanisms of resistance as they present before and during extended 
treatments. This report describes our efforts to accomplish that by analyzing blood and tumor 
biospecimens as well as anatomic tumor images collected over a 42-month period from a 
patient with metastatic, ER+ breast cancer. Integration of these data with clinical information, 
including individual treatment times and doses, constitutes an Omic and Multidimensional 
Spatial (OMS) Atlas that we analyzed to identify mechanisms of response and resistance. We 
believe that this OMS Atlas constitutes the most comprehensive analysis of the response of 
metastatic tumors to longitudinal combination therapies reported to date.  

The process workflow described in Figure 1 was critical to this atlas. This workflow brings 
together detailed clinical information with analysis results from complex computational 
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workflows. Only when this information is combined can the detailed study described in this 
report be carried out. Collecting and organizing needed clinical information in a timely manner is 
quite challenging because these data reside in multiple databases and in data formats that were 
not designed to provide the required level of detail or accuracy. Clinical data collection and 
organization was accomplished using a combination of automated and manual extraction and 
careful human curation. Analysis of omics and imaging data collected from blood and tumor 
biopsies required integrating multiple software systems for data management, processing, and 
visualization. Further, each of the software components was extended to meet the unique needs 
of our approach. Together, this process workflow outlines the many essential steps and 
software needed to collect and process all data quickly enough to be used for treatment 
decisions. 

The acquisition of tissue biopsies from specific lesions combined with CT/PET imaging over 
time provided precise information about the behavior of each biopsied lesion before and after 
biopsy. This enabled direct assessment of the efficacy of treatments suggested by analyses of 
the biopsied lesion. Rapid preservation (two to five minutes from biopsy to start of preservation) 
enabled optimal conservation of the molecular and architectural features in each biopsied 
lesion, some of which may change within minutes after interruption of blood flow. Rapid 
preservation is particularly valuable in analyses of pharmacokinetic responses to drugs and in 
studies of nanoscale inter- and intracellular compositions and interactions. 

Integrated analyses of the omic and multiscale image measurements with associated clinical 
treatment and response information provided information about tumor evolution over time and 
across treatments that enabled identification of potential mechanisms of response and 
resistance for each treatment phase. We accomplished this by first linking the information 
comprising the OMS Atlas for each biopsy with curated public datasets and domain literature 
that identified mechanistic associations and then identifying features that changed between 
biopsies taken before and during treatment. We assigned highest confidence to mechanisms 
that were implicated by more than one line of evidence. Identification of potential mechanisms 
underlying resistance was complicated by the fact that combinations of drugs were used in each 
phase of treatment. In retrospect, introduction of the drugs stepwise would simplify mechanistic 
studies by allowing the response to each to be assessed independent of the others, although 
this must be balanced against the need to achieve tumor control quickly. Nonetheless, several 
potential mechanisms of resistance and therapeutic vulnerabilities were identified for each 
treatment phase. Importantly, each of the analytical modalities contributed to these insights. 
These mechanisms and vulnerabilities are summarized below based on both clinical and 
research data. It is important to note that the research data were not used to guide treatment 
and are presented here post hoc to inform on possible mechanisms. 

Efficacy of Phase 1 treatment with fulvestrant, palbociclib, and everolimus was compatible with 
ER expression, wild type ESR1, phosphorylated RB1, amplification of CCND1, and active PI3K 
signaling in Bx1. The treatment was initially modestly effective in reducing tumor lesion sizes 
and tumor protein levels in the blood, but this benefit was lost after six months. Analysis of Bx2, 
taken while the patient was still on Phase 1 treatment, to identify resistance mechanisms was 
complicated by the fact that these drugs target overlapping and interacting regulatory 
processes. Nonetheless, our analyses implicated upregulation of PI3K signaling via a PIK3CA 
p.E542K activating mutation, compensatory feedback signaling through mTORC2, activation of 
CDK2, sequestration by lysosomotropism, and compensatory signaling via the androgen 
receptor as possible resistance mechanisms. These analyses support switching from palbociclib 
to abemaciclib to counter the observed CDK2 activation (Hafner et al., 2019), use of 
enzalutamide to counter possible androgen mediated signaling as was done in Phase 3, and 
administration of a lysosomotropic drug such as hydroxychloroquine (Fassl et al., 2020) to 
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counter sequestration of palbociclib or abemaciclib. Phase 1 treatment was terminated when 
blood biomarkers and CT measurement of several—but not all—metastatic lesions began to 
increase sharply. 

Phase 2 treatment was comprised of liposomal doxorubicin and pembrolizumab and resulted in 
an immediate and dramatic reduction in tumor protein biomarkers in the blood and in the sizes 
of several lesions, including the one sampled in Bx2. This positive response to liposomal 
doxorubicin was consistent with reliance of the tumor on macropinocytosis for survival, a 
mechanism that could also facilitate uptake of the liposomal drug composition. A positive 
response to the immune checkpoint inhibitor is consistent with a palbociclib mediated 
transcriptional upregulation of regulatory networks in Bx2 that would enhance antitumor 
responses, including the observed increase in CD163+ macrophages and the Th17/Treg ratio. 
These changes were accompanied by an increase in PD-1+ EOMES- T cells that might blunt an 
immune response and that we speculate was attenuated by pembrolizumab. The Phase 2 
treatment began to lose efficacy after approximately 6 months. This loss of efficacy plus a 
clinical concern for doxorubicin-mediated cardiotoxicity motivated termination of the Phase 2 
treatment. 

Phase 3 treatment was comprised of continued pembrolizumab plus enzalutamide, 
capecitabine, and fulvestrant, which resulted in a reduction in tumor biomarkers in the blood to 
near background levels and continued reduction in the sizes of most metastatic lesions. 
Enzalutamide was included to counter possible androgen receptor mediated signaling. 
Response to capecitabine was expected given the observation of normal levels of TYMS, the 
target of the capecitabine metabolite FdUMP. A slow rise in tumor biomarkers in the blood after 
approximately 20 months and the development of a persistent FDG-PET positive lesion in the 
bone motivated acquisition of Bx3. Analyses of that biopsy revealed a narrow amplification of 
the region of the genome around TYMS, coupled with over expression of this gene, indicating 
this copy number alteration as a potential resistance mechanism. Importantly, the region of 
amplification also contained the SRC family tyrosine kinase YES1, which might further 
contribute to tumor progression, thus indicating the possible utility of the YES1 inhibitor 
dasatinib in countering resistance potentially mediated by this amplification. 
The multiscale imaging analyses also identified several other aspects of tumor biology that 
could be manipulated in future treatments. These include interdicting tumor-stromal signaling 
processes that lead to the formation of stromal barriers around tumor cell clusters that might 
attenuate drug access and immune signaling, MYO10 mediated signaling and motility along 
FLPs, and forced mitochondria-nucleus proximity that might alter aspects of DNA damage repair 
and/or ROS signaling. 

Overall, this multi-analyte, treatment-response Atlas derived for a single patient from the OHSU 
SMMART program shows both the promise and challenges of a personalized approach to 
metastatic cancer treatment. A truly personalized approach requires sufficiently advanced 
methods for collecting and analyzing both clinical and molecular data, coupled with the ability to 
interpret results in the context of longitudinal samples from the same patient. We have now 
shown that acquisition, management, analysis, and interpretation of biospecimen to identify and 
act on mechanisms of resistance in a time frame needed for patient management is feasible. 
We acknowledge that the analytical methods are currently too complex to be widely applied but 
could be dramatically simplified once the utility of each assay platform is established. 

Frequent measures of tumor response from CT/PET imaging and blood profiling provided rapid 
and quantitative information about overall tumor response to treatment, as well as information 
about heterogeneity in responses between lesions. This level of detail enables rapid 
assessment of responses to specific drug combinations and provides information about the 
extent to which tumor control is maintained after dose reductions needed to mitigate toxicity 
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effects. Together, these capabilities provide rationale and feasibility for treatment programs in 
which established and experimental drug combinations are rapidly tested for efficacy and 
replaced by more effective drugs as needed. Implementation of such a program promises for 
patients to both increase the duration of tumor control and reduce toxicity produced by 
continued administration of ineffective drugs.  

The major challenges to Personalized Cancer Treatment yet to be fully addressed are drug 
access and the lack of strategies to manage heterogeneous tumors. Rapid elucidation of 
evolving resistance mechanisms and new therapeutic vulnerabilities can indicate off label use of 
drugs and drug combinations. Such a regimen raises safety and cost issues. The remarkable 
intermetastatic heterogeneity that clearly exists could suggest combining increasing numbers of 
drugs, which may not be manageable because of unacceptable toxicity or because of the 
realities of drug access and cost. One possible approach to counter this diversity is by cycling 
between drug combinations that affect different subsets of the disease. A further challenge is 
that a biopsy of a single metastatic lesion only reports on that particular lesion and, due to the 
small size of the biopsy, may not fully capture intrametastatic heterogeneity. Further 
development of assays for tumor components present in peripheral blood that report on overall 
tumor composition and burden might be better guides to such treatments than tissue biopsies. 
 Although there are significant challenges that must be overcome in order for the full impact of 
personalized cancer treatment to be realized, the present study suggests that success will be 
possible through clinical implementation of analytical approaches that are now being developed 
throughout the HTAN and elsewhere. 
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Figure Legends 

Figure 1. Workflows and analytical platforms used in generation of the Atlas. 

Figure 2. Timeline of treatment and response metrics. 

(A) Treatment schedule and biopsy timing (red stars) over the course of three phases of 
treatment (red, blue, and green areas). The duration and relative dose for each drug is indicated 
by the extent and width of a horizontal bar. Continuation of a drug after the end of Phase 3 is 
indicated by a right pointing arrow. (B) Clinically reported serum levels of three tumor protein 
biomarkers. CEA values were multiplied by 5 to facilitate visualization. (C) Longitudinal tracking 
and variation in the longest-axis size of 15 representative metastatic lesions measured from 
serial CT images. The anatomic locations of the lesions are indicated in the figure. The results 
of FDG-PET imaging are indicated by circles, colored and centered on the lines of their 
corresponding lesion. The diameter of each circle is proportional to the background-normalized 
SUVmax. See also Figures S1, S2, and Table S1. 

Figure 3. Genomic evolution and mechanisms of therapeutic response and resistance revealed 
by integrative omic analyses. 

(A) Comparison of somatic genetic alterations. Single Nucleotide Variants and Insertion-
Deletions were identified from whole exome sequencing (WES) of tissue samples and classified 
as Ubiquitous (present in all samples; blue), Shared (present in at least two samples; green), or 
Private (present in only a single sample; red). Variants detected in at least 2 reads but not 
independently called are shown with reduced opacity. (B) Phylogenetic tree showing the 
evolutionary relationship between the primary tumor and two metastases generated from 
somatic genetic alterations identified from WES data across all four tissue samples. A CCND1 
gain was ubiquitous, a pathogenic PIK3CA p.E542K mutation was private to Bx2, and a TYMS 
amplification was private to Bx3. (C) Transcriptomic gene set variation analysis (GSVA) of 
Cancer Hallmark pathways. The boxplot represents the distribution (upper and lower quartiles 
and median) of GSVA scores for the TCGA Luminal breast cancer cohort. Enrichment scores 
also are shown for patient samples Bx1 (green line), Bx2 (orange line), and Bx3 (purple line). 
(D) RPPA protein pathway activity assessment using pathway scores. The boxplot represents 
the distribution of the pathway activity of the TCGA breast cancer cohort as well as the pathway 
activities of patient samples Bx1 and Bx2. (E) Intracellular Signaling Protein Panel 
measurements of total and phosphoprotein levels in Bx2 and Bx3. The boxplots represent the 
distribution of protein levels of 57 metastatic breast cancers and compared to Bx2 and Bx3. (F) 
Total and phosphoprotein levels from RPPA analyses. Protein expression values were 
normalized within the TCGA breast cancer cohort. The heat map represents a rank sum 
ordering of protein expression based on the fold-change of Bx2 relative to Bx1 with selected 
proteins highlighted. (G) Phosphoproteins in the PI3K-AKT-mTOR pathway effected by 
everolimus in Bx2, as summarized from RPPA data. Everolimus leads to decreased 
phosphoprotein activity downstream of mTORC1, but multiple phosphoproteins are increased in 
the PI3K-AKT arm of the pathway, possibly through mutant PI3K E542K activity or feedback 
signaling to mTORC2. (H) Protein and phosphoproteins in cell cycle regulatory pathways 
effected by palbociclib, as summarized from RPPA data of Bx2. Palbociclib should activate RB1 
by inhibiting its phosphorylation by the Cyclin D/CDK4/6 complex. However, Bx2 had continued 
high levels of RB1 phosphorylation and tumor cell proliferation on palbociclib, possibly due to 
RB1 inactivation by cyclin/CDK2 complexes that remain active due to PI3K-AKT-dependent 
degradation of the CDK2 inhibitor p21. Inferred activities or regulation in both (G) and (H) are 
based on total or phosphoprotein quantity combined with known function to reflect relative 
increases (red), decreases (pink, green), or unchanged/unknown (yellow) activities. See also 
Figure S3 and Table S2. 
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Figure 4. Monitoring response to therapy with deep in situ immune phenotyping by mIHC 

(A) Primary tumor (PT) and three biopsies (Bx1-3) were subjected to multiplex 
immunohistochemical (mIHC) analyses quantitatively evaluating immune (CD45+) and epithelial 
(Pan cytokeratin/CK+) positive cells in tumor compartments enumerated as % of total nucleated 
cells, and by overall cell density (#cells/mm2 tissue analyzed). (B) Graphical representation of 
tissue composition, showing proportion of PanCK+, CD45+, and PanCK- CD45- (other) nucleated 
cells. (C) Immune composition (as percent of total CD45+ cells) comparisons of seven major 
leukocyte lineages, including macrophages and monocytes (mac/mono). (D) Deeper auditing of 
leukocyte lineages in Bx1 and Bx2 enumerating 13 immune cell populations and functional 
states. (E) Total CD3+ T cell abundance (orange pie slice) of total CD45+ cell populations (left), 
and proportion of CD4+ (blue) and CD8+ T cells (gray) within total T cells (right) in the primary 
tumor and three biopsies. (F) Presence of PD-1+ cells (as percent of total CD3+ T cells) in both 
the CD3+CD4+ and CD3+CD8+ T cell populations. (G) Differentiation state of CD3+CD4+ T cells 
reflected by regulatory (Treg), Th1, Th2, Th17, and Th0/γδ subsets (left), and CD3+CD8+ T cells 
as reflected by expression of PD-1 and EOMES. (H) Differentiation state of CD3+CD4+ T cells 
reflected by regulatory (Treg), Th17, Th1, Th2, and Th0/γδ subsets in Bx1 and Bx2. See also 
Figure S4 and Table S2. 

Figure 5. Monitoring tumor and stromal responses to therapy using CycIF and FIB-SEM  

(A) Z-score heatmap showing 11 subpopulation clusters (0-10), which were generated from 
unsupervised cluster analysis of 20 protein expression levels for all cells in Bx1, Bx2, Bx3, 
HER2 Luminal, normal breast, tonsil, and six cell lines (T47D, BT474, AU565, HCC3153, 
HCC1143, and MDA-MB-436). Cluster IDs and annotations are on the right. The color scale bar 
indicates log transformed protein expression after Z-score normalization. Abbreviations: Lum – 
Luminal, Bas – Basal, Mes – Mesenchymal. (B) Composite CycIF high power images from Bx1 
(left), Bx2 (middle), and Bx3 (right). The scale bars indicate 20 µm. Green, red, turquoise, and 
gray colors represent Vimentin (fibroblast), CD31 (endothelial), E-cadherin (epithelial), and DNA 
(nuclei), respectively. (C) Bar plots showing cell compositions in Bx1, Bx2, Bx3, and reference 
tissues (cell lines; T47D, BT474, HCC1143), normal breast (Norm Breast), and HER2+ Luminal 
B subtype breast cancer (HER2 Lum). Cluster compositions for all cell types are shown in the 
left panel, for epithelial cells in the center panel, and for non-epithelial in the right panel. (D) 
Histograms showing distances from tumor cells to the nearest immune cells (top two panels; 
macrophage and T cell) and to the nearest endothelial cells and fibroblasts (bottom two panels). 
(E) Two views of reconstructed 3D FIB-SEM data from Bx1 showing the intimate relationship 
between the cancer cells (red and pink) and the fibroblasts (blue and turquoise). The close-up 
view on the top shows nanoscale cell-cell interactions, while the pulled-out full volume view on 
the bottom shows the fibroblasts wrapping around the tumor nest creating a protective barrier. 
Scale bars = 5 µm. Movies showing these interactions in more detail are available as 
supplementary material. See also Figure S5 and Table S5. 

Figure 6. Therapy related inter- and intracellular compositions and interactions revealed using 
focused ion beam-scanning electron microscopy (FIB-SEM). 

(A) 3DEM side-view rendering of a cell from Bx2 showing the length of filopodia extensions, 
while also exhibiting alignment of the internal mitochondria. Scale = 3 μm. (B, C) Two different 
views of the same reconstructed 3DEM data from Bx2 showing the paddle-shaped lamellipodia 
of the green and purple cells and the long filopodia extending from the red (same cell as in A) 
and blue cells into the stroma and interacting with neighboring cells. The purple cell and red cell 
from (A) were removed from view in (B) and (C), respectively, to more easily show the 
protrusions. Scale = 1 μm. (D) 3DEM view showing high mitochondrion density residing in 
nuclear folds in Bx2. Scale = 1 μm. (E) Large electron-dense lysosomal granules were identified 
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in Bx2 3DEM volume and found dispersed between macropinosomes. Scale = 1 μm. (F) 
Additional detail from Bx1 of the nuclear invaginations and organization of mitochondria and 
macropinosomes. Scale = 1 μm. (G) Qualitative summary of ultrastructural feature prevalence 
with respect to normal tissue. Panels A, D, F color key: blue = nucleus, magenta = 
mitochondria, orange = nucleoli, yellow = macropinosomes; Panel E color key: green = 
lysosomes, red = macropinosomes. See also Figure S6 and Movies S1-4. 

Tables 

None 

Methods 

Patient Consent and Biospecimen Collection 

This study was approved by the Oregon Health & Science University (OHSU) Institutional 
Review Board (IRB). All biospecimens and data were acquired and analyzed under the OHSU 
IRB-approved protocols Molecular Mechanisms of Tumor Evolution and Resistance to Therapy 
(IRB#16113) and Reconstructing the Tumor Genome in Peripheral Blood (IRB#10163). 
Informed written consent was obtained from the subject. 

Resource Availability 

All primary datasets from clinical and exploratory analytics generated during this study are 
available through the HTAN Data Coordinating Center (https://humantumoratlas.org/) as patient 
HTA9_1 in the OMS Atlas. 

The published article includes all clinical metadata analyzed during this study (Table S1). 

This study did not generate new unique reagents. 

Radiology 

FDG-PET/CT imaging was performed according to the standard institutional protocol, with 
patients fasting for 6 hours following 24 hours of rest. Prior to the examination and FDG 
injection, blood glucose levels were confirmed to be less than 200 mg/dL. The patient received 
a dose of 18F-FDG of 370 to 555 MBq (10-15 mCi) on the basis of body weight. After an uptake 
period of 90 minutes, a vertex-to-midthigh FDG-PET/CT scan was performed using 3 min/bed 
position on a CTI Biograph duo PET/CT scanner (Siemens Medical Systems, Hoffman Estates, 
Illinois, USA) or a CTI Biograph TruePoint 40 PET/CT scanner (Siemens Medical Systems, 
Knoxville, Tennessee, USA). CT imaging was performed according to the standard institutional 
protocol from clavicles to mid-thigh on a Phillips Brilliance CT 128slice helical scanner (Philips 
Medical Systems, Amsterdam, NE). 

Pre- and on-treatment FDG PET/CT studies were reviewed by an expert nuclear medicine 
physician with analysis performed by a body imager with 15 years of experience in oncologic 
imaging. Target lesions were selected by having maximum standard uptake values (SUVs) 
greater than normal mediastinum average (lymph nodes), and greater than background liver 
SUV (liver lesions) and were recorded on the pre- and on-treatment scans at the same tumor 
region. Image analysis was performed using syngo via advanced visualization software 
(Siemens Healthcare GmbH, Erlangen, Germany) and Horos visualization software (Horos, 
Lausanne, Switzerland). All lesions meeting these criteria were recorded both on FDG-PET/CT 
and combined with long axis measurements (e.g., liver, splenic, lung lesions) and long and 
short-axis measures (lymph nodes) at all time points during the care of the patient. All SUVmax 
measures were normalized by subtracting the mean background SUVmax from the organ of 
origin (e.g., mediastinum or liver). 
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GeneTrails® Solid Tumor Panel 

The GeneTrails Solid Tumor Panel is performed by the OHSU Knight Diagnostic Laboratories 
on genomic DNA extracted from macro-dissected, tumor-rich regions of formalin-fixed paraffin-
embedded tissue (FFPE). Next-generation sequencing libraries were prepared using custom 
QIASeq chemistry (QIAGEN) with multiplexed PCR, and sequenced on an Illumina 
NextSeq500/550. The DNA library was generated by 9,229 custom-designed primer extension 
assays covering 613,343 base pairs across 225 cancer-related genes (including whole exons of 
199 genes and hotspot regions of 26 genes). This panel is routinely sequenced to an average 
read depth of >2,000, providing high sensitivity for SNVs, short insertions/deletions, and copy 
number alterations. Variants were identified using both FreeBayes and MuTect2 algorithms in a 
custom sequencing analysis pipeline. 

Blood collection and DNA isolation for WES and DIDA-Seq 

Up to 40 mL (range 6-40 mL) of blood were collected in 5x 6-mL or 4x 10-mL, purple-capped 
EDTA tubes. Consistent with published recommendations (Merker et al., 2018), blood plasma 
was isolated within 6 h of collection by first spinning whole blood at 1000g for 10 min, separating 
the top plasma layer into 1 mL aliquots, then spinning those aliquots at 15,000g for 10 min, 
transferring the supernatant to cryovials, and storing at -80°C. DNA extraction of tumor tissue 
from FFPE was carried out using QIAGEN FFPE DNA extraction kit (QIAGEN). DNA was 
extracted from plasma and buffy coat using Macherey-Nagel NucleoSnap and QIAGEN Blood 
and Tissue kits, respectively. DNA isolated from both FFPE samples and buffy coat were 
fragmented by sonication to 150 bp using a Covaris E220 prior to library preparation. 

Whole Exome Sequencing (WES) 

Sequencing libraries were prepared using 100-500 ng of cell free DNA (cfDNA) or sonicated 
genomic DNA using KAPA Hyper-Prep Kit (KAPA Biosystems) with Agilent SureSelect XT 
Target Enrichment System and Human All Exon V5 capture baits (Agilent Technologies). Next 
generation sequencing was carried out using the Illumina NextSeq500 or HiSeq 2500 platform 
with 2x79-144 cycles by the OHSU Massively Parallel Sequencing Shared Resource to an 
average depth of 100X per library replicate. 

Somatic mutation calling: sequence read FastQ data files were aligned to the UCSC hg19 
human genome build using BWA MEM (0.7.12, GATK, Broad Institute) (Li and Durbin, 2010) 
followed by marking duplicate reads (Mark Duplicates) and base recalibration (BQSR) 
(McKenna et al., 2010). Bam files for replicate libraries were merged and somatic variants were 
called using MuTect2 (4.0.4.0 GATK, Broad Institute) between tumor or cfDNA and the patient’s 
matched normal from buffy coat (Cibulskis et al., 2013). A panel of normal (PON) and the 
gnomAD (release 2.0.1; https://gnomad.broadinstitute.org/) germline reference resource were 
used to filter out technical sequencing artifacts and common polymorphisms, respectively. All 
analysis tools were run using an OHSU Galaxy instance (v17.09) (Afgan et al., 2018). 

Phylogenetic and Clonal Analysis: Mutect2 and mpileup (Li, 2011) were used to call or detect 
presence of variants across all samples. Only sequence reads with base quality greater than 20 
and mapping quality greater than 30 were used for mpileup. Variants with VAF lower than 5% or 
depth lower than 30 reads were filtered. The R package ape (Paradis and Schliep, 2019) was 
used for phylogenetic analysis. A binary table of variants present across all tumor samples was 
generated as input. Genetic distance was estimated using the dist.gene function with the 
pairwise method. Minimum Evolution (ME) fit with ordinary least-squares (OLS) using the 
FastME function was used to reconstruct the phylogeny. 

Copy Number Analysis: Copy number analysis was performed with CNVkit (v0.9.4a0) (Talevich 
et al., 2016) using the tumor/ctDNA aligned reads (BAM) and a pooled normal reference. On- 
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and off- target read depths from each sample were median-centered log2 normalized, followed 
by GC bias correction and repeat masking. Tumor copy ratios were estimated by subtracting the 
log2-normallized depths for each bin. Corrected copy ratio profiles were segmented using 
circular binary segmentation (CBS). Tumor purity estimates were then used to call each 
segment’s absolute integer copy number. 

Dual Index Degenerate Adaptor Sequencing (DIDA-Seq) 

Bait Design: Single nucleotide variants (SNVs) were filtered by frequency (>5% in the 
tumor/cfDNA and <2% in the matched normal) and depth (>30x in the tumor/cfDNA and >15x in 
the matched normal). A set of 20-40 SNVs were then hand-curated and chosen per tumor tissue 
sample based on clonality and potential functional impact for bait design. 

Library Preparation: We chose 53 mutations representative of all four classes of origin, both 
clonal and subclonal, functional and non-functional, to monitor longitudinal blood draws for the 
presence of tumor-derived circulating tumor DNA (ctDNA). DIDA-Seq error-correction libraries 
were created using the Kapa Biosystems Hyper Prep kit using at least 30 ng of cell-free DNA as 
input as previously described, using a single over-night capture incubation instead of two 
incubations (Butler et al., 2019) . Samples were sequenced on either the Illumina HiSeq 2500, 
paired-end 100 bp, with dual 14-bp indexing cycles (highcapacity, rapid run mode) or the 
Illumina NextSeq 500, paired-end 75 bp with dual 14-bp indexing cycles (high-capacity, 150-
cycle kit). 

Error-Correction, Bait Evaluation, and Variant Analysis: The pipeline for analyzing DIDA-Seq 
data was based on the duplex sequencing pipeline developed in the Loeb laboratory at the 
University of Washington with substantial modification to be compatible with our data (Kennedy 
et al., 2014). The DIDA-Seq computational pipeline was implemented as previously described 
(Butler et al., 2019) and the variant allele frequency was determined for each mutation at each 
time point. Each panel of baits corresponding to variants found in a given tissue or set of tissues 
(primary, Bx1, and Bx2) was evaluated using unrelated patient cfDNA samples (negative 
controls). In our patient, we sequenced each library to an average post-error correction depth of 
4,000-15,000X coverage per site-of-interest and determined the variant allele frequency (VAF). 
We compared the mutation-specific VAF in the patient’s plasma to the VAF of the same site in 
the set of pooled negative controls (sequenced to an average post error-correction depth of 
100,000X per site giving an average error rate of 1 in 30,000 reads). A p-value was generated 
for each site and sites aggregated by panel using the overlap coefficient of the beta distributions 
between the VAF in the sample and VAF in the negative controls (Montoya et al., 2019). Any 
site with greater than 1% VAF in the negative controls was omitted from further evaluation. Data 
points having a p-value greater than 0.05 were considered not statistically different from the 
negative controls, effectively determining our lower limit of detection given the individual or 
aggregated sites’ sequencing depth at each time point. 

RNA Sequencing and Transcriptomic Analysis 

Library construction and sequencing: RNA was extracted from macro-dissected, tumor-rich 
regions of formalin-fixed paraffin-embedded tissue (FFPE) at the CLIA-certified/CAP-accredited 
OHSU Knight Diagnostics Laboratories. Sequencing libraries are constructed with the TruSeq 
RNA Exome Library Prep Kit followed by sequencing on Illumina NextSeq500. To allow for 
assessment and removal of technical artifacts (due to, e.g., library preparation), a Universal 
Human Reference (UHR) (Chem-Agilent, Catalog #740000) was sequenced with each batch of 
samples.  
Gene Quantification: Transcript quantification followed the methods described by Tatlow and 
Piccolo (Tatlow and Piccolo, 2016). Briefly, the raw sequence reads were quality trimmed using 
Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) followed by 
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pseudo-alignment and transcription quantification using Kallisto with GENCODE reference 
transcriptome (version 24). Transcript level expression is aggregated to gene level abundance 
using the R package tximport (Soneson et al., 2016) yielding expression values for 60554 
Ensembl genes. 

Batch Correction: Genes were filtered based on a minimum of 3 transcripts per million (TPM) in 
at least 3 of 48 samples, which included 29 ER+ metastatic breast cancer samples and 19 UHR 
samples. The filtered gene expression matrix (16,364 genes) was batch corrected by removing 
unwanted variation (RUV) (Peixoto et al., 2015; Risso et al., 2014). RUV correction uses factor 
analysis to identify the factors of unwanted variation observed in the UHR batch control and 
corrects for them across all samples. RUV was applied by removing 1 factor (k) using the 5% of 
genes with the lowest standard deviation. In addition to intra-cohort batch correct, the patient 
samples were batch adjusted for analyses comparing to the TCGA BRCA (Tatlow and Piccolo, 
2016). The TCGA BRCA gene expression matrix was filtered to samples with a Luminal (A or B) 
molecular subtype and joined with the RUV corrected patient sample gene expression. The 
combined matrix was log transformed, filtered to genes with a minimum of 3 log2 TPMs in at 
least 3 samples, and batched corrected using ComBat with TCGA samples set as the reference 
(Leek et al., 2012).  

Molecular Subtype Signature: The PAM50 subtype gene signature was used to classify samples 
into the intrinsic molecular subtypes (Parker et al., 2009). A cohort of 20 ER+ and 20 ER- 
samples was used as the background for classifying the patient samples’ subtypes. The gene 
expression matrix using these 40 samples and the patient samples was mean centered and 
correlated (Spearman) to the pre-defined centroids based from Parker et al. The samples were 
assigned to the molecular subtype with the highest Spearman correlation to the subtype 
centroid. 

Pathway enrichment analysis: Gene set variation analysis (GSVA) was used to estimate 
pathway enrichment of the 1.) MSigDB Cancer Hallmark Pathways (50 gene sets), 2.) All 
MSigDB Pathways (~20K gene sets), and 3.) Reactome Pathway Database (~2K gene sets) 
(Hanzelmann et al., 2013); https://bioconductor.org/packages/release/bioc/html/GSVA.html; 
(Jassal et al., 2020; Liberzon et al., 2015). GSVA used a Gaussian kernel for estimating the 
cumulative density function and the enrichment statistic was calculated as the difference 
between the maximum positive/negative random walk deviations. This analysis was applied to 
the RUV/ComBat adjusted log2 gene expression matrix that included both TCGA BRCA 
Luminal Samples and the patient samples. 

Transcriptional regulator networks 

Regulatory pathway and molecular interactions network: The regulatory network used to 
generate enrichment signatures is derived from the aggregation of publicly available molecular 
interactions and biological pathway databases provided by the Pathway Commons (PC) 
resource (Cerami et al., 2011) . The aggregated data is represented in the standard Biological 
Pathway Exchange (BioPAX) language and provides the most complete and rich representation 
of the biological network models stored in PC. These complex biochemical reactions were 
reduced to pairwise relationships using rules to generate a Simple Interaction Format (SIF) 
representation of BioPAX interactions. The reduction of BioPAX interactions to the SIF allows 
for the representation of pairwise molecular interactions in the context of specific binary 
relationships. The feature space of the SIF regulatory network was restricted to primary and 
secondary downstream interactions for genes within Pathway Commons. The regulatory 
network was then reduced to edges that are associated with the binary relationship “controls-
expression-of”, defined as any reaction where the first protein controls a conversion or a 
template reaction that changes the expression of the second protein. 
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Network weight assignment: Weights are assigned to the protein-protein edges within the graph 
for each regulator-target pair within the regulatory network that is represented in the expression 
data set. These weights are derived from the integration of an F-test statistic to capture linear 
dependency and the Spearman rank-order correlation coefficient for a given regulator-target 
pair. 

Regulon enrichment: This method leverages pathway information and gene expression data to 
produce regulon-based protein activity scores. Our method tests for positional shifts in 
experimental-evidence supported networks consisting of transcription factors and their 
downstream signaling pathways when projected onto a rank-sorted gene-expression signature. 
The gene-expression signature is derived by comparing all features to the median expression 
level of all samples considered within the data-set. After weights have been assigned to the 
regulatory network, the positive and negative edges of each regulator are rank ordered. The first 
component of the enrichment signature, the local delta concordance signature, is derived by 
capturing the concordance between the magnitude of the weight assigned to a particular edge 
and the ranked position of that edge. The features associated with activation, positive edges 
within the regulatory network, are monotonically ranked from most lowly to highly expressed in 
the restricted feature space, where the features that are repressed are ranked by a 
monotonically decreasing function. This component of the signature considers positive and 
negative edges independently, which captures support for an enrichment signature even if one 
of the edge groups is underrepresented in the network graph. The second component of the 
enrichment signature, the local enrichment signature, captures positional shifts in the local gene 
ranked signature and integrates those shifts with the weights assigned to overlapping features 
for a given regulon and the expression data set. The last component of the enrichment 
signature considers the entire feature space and projects the rank-sorted local signature onto 
this global ranked feature space. We derive our global enrichment signature from this projection 
for each regulator we consider. We use the median of robust quantile-transformed ranked 
positions as the enrichment scores for both the local enrichment and global enrichment 
signatures. We then integrate these three individual signatures together, which allows us to 
capture differences between individual regulator signatures within the context of an individual 
patient as well as at a cohort level. 

Reverse Phase Protein Arrays 

Protein extracts from tumor samples were analyzed as previously described (Labrie et al., 
2019b; Tibes et al., 2006). In order to scale the protein expression values, the RPPA data from 
the patient samples was merged within the TCGA breast cancer RPPA dataset, using the 
replicate-based normalization method (Akbani et al., 2014). The protein expression values were 
then z-scored by using the median and standard deviation and a heat-map was generated from 
the treated and untreated samples, using Rank-Sum ordering of the proteins fold change. The 
heat map was produced using publicly available Cluster 3.0 and TreeView software. 

Pathway Analysis: All pathway predictors have been previously described (Labrie et al., 2019b). 
Proteins used as predictors of the different pathways are listed in Table S2. To determine a 
pathway score, for each sample all positively associated predictors were summed minus the 
predictors that are negatively associated with the pathway. The total was then divided by the 
numbers of predictors in the pathway. To generate the pathway scores histograms, the 
distribution of each TCGA samples subtype was plotted and the value of the patient pre- and 
post-treatment sample was added to the histograms. 

Intracellular Signaling Protein Panel 

The Nanostring 3D Vantage Solid Tumor Panel is comprised of 27 antibodies, including 13 
phosphorylated protein targets, specifically designed to interrogate the MAPK and PI3K/mTOR 
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signaling pathways (Lee et al., 2018). This multiplexed panel allows for the simultaneous 
quantification of multiple proteins from a single section of FFPE tissue. Four micron sections of 
FFPE cancer cell lines (controls) or tumor biopsy tissue were subjected to citrate-based antigen 
retrieval and incubated overnight with the cocktail of oligo-tagged antibodies. After washing, the 
oligo-tags were released by UV light (3 minutes on a UV lightbox) and quantified using the 
Nanostring nCounter system. A set of 6 FFPE cancer cell lines were selected as positive 
controls and included on every run to assess antibody and control performance and to correct 
for batch effects. Batch correction was preformed using Removal of Unwanted Variation (RUV) 
using the replicate positive controls to estimate the factors associated with batch effect (Molania 
et al., 2019). RUV parameters were optimized by measuring the consistency of replicate 
controls and careful evaluation of outliers to ensure validity of results. This assay was validated 
for clinical use in the Knight Diagnostic Laboratories at OHSU as the GeneTrails® Intracellular 
Signaling Protein Panel. 

Integrative Analyses 

Multi-omic integrated pathway analysis: CausalPath 
(https://github.com/PathwayAndDataAnalysis/causalpath; commit 9f8d6f8) was used for 
integrated pathway analysis of protein, phosphoprotein, and gene abundance 
(https://www.biorxiv.org/content/10.1101/258855v4). Briefly, CausalPath is a hypothesis 
generating tool that uses literature-grounded interactions from Pathway Commons to produce a 
graphical representation of causal relationships that are consistent with patterns in a multi-omic 
datasets (Rodchenkov et al., 2020). This integrative approach allows for holistic evaluation of 
signaling networks and pathway activity across longitudinal biopsies. The CausalPath analysis 
used the log fold change of total and phosphoprotein (RPPA) and gene expression from Bx1 
and Bx2 with the following parameters: threshold-for-data-significance = 0.4 for RNA, protein, 
and phosphoprotein, value-transformation = max, calculate-network-significance = true, 
permutations-for-significance = 10,000, color-saturation-value = 2.5, data-type-for-expressional-
targets = rna and protein, show-all-genes-with-proteomic-data = true, and show-insignificant-
data = true. The transcriptional regulon enrichment activity was mapped and overlaid on to the 
CausalPath generated network. The network was pruned to focus on the pathways related to 
the targets of the Phase I therapies. 

Integrated Heatmap: The gene, protein, phosphoprotein abundances, and transcriptional 
regulon enrichment activities were integrated into a single heatmap. Each data type was 
independently scaled to -1 to 1 with the exception of protein/phosphoprotein, which were scaled 
together. Fold change of biopsy 2 to biopsy 1 was calculated for each scaled feature and 
represented as a heatmap grouped by pathway categories of interest. 

Multiplex Immunohistochemistry 

Immunohistochemical staining: Glass mounted FFPE tissue sections (5 μm) were baked at 
60°C for 60 minutes, deparaffinized with xylene, and rehydrated in serially graded alcohols, then 
place in distilled water. Slides were stained with hematoxylin (Dako, S3301) for 1 minute, 
mounted with 1x TBST buffer (Boston Bioproducts, IBB-181R), coverslipped with Signature 
Series Cover Glass (Thermo Scientific, 12460S), and subjected to whole slide digital scanning 
at 20x magnification using an Aperio ImageScope (Leica Biosystems). Slides were de-
coverslipped with 1 min of agitation in TBST, and subjected to heat-mediated antigen retrieval in 
1x pH 6.0 citrate buffer (Biogenex Laboratories, HK0809K) for 20 min at 95°C followed by 
blocking of endogenous peroxidase activity (Dako, S2003, per manufacturer’s instructions). 
Slides were then subjected to 12 cycles of multiplex immunohistochemistry (mIHC), each cycle 
consisted of either 1 or 2 rounds of IHC. Each round consisted of immunodetection (primary 
antibody, HRP-linked secondary antibody, HRP-mediated development of AEC chromogen), 
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and whole slide scanning. Citrate antigen retrieval was used between cycles to remove primary 
antibodies, and HRP inactivation was used between rounds (Dako, S2003, per manufacturer’s 
instructions) to eliminate HRP carry-over as described previously (Banik et al., 2020; Tsujikawa 
et al., 2017). Several antibody panels (and variations of) were utilized for the current study 
(Table S2). Where IHC and chromogenic staining did not pass QC, they were not included in 
analysis: e.g., PD-L1 and CSF1R on the myeloid panel, and CD68 and ICOS on the functional 
panel(s). Several antibodies were not common across all or some panels, thus not included in 
results: IDO on functional panel (Bx1), Tryptase on myeloid panel (Primary, Bx1 and Bx2), 
RORyT and GATA3 on the lymphoid panel (primary, Bx1, and Bx2), and CCR2, HLA class-I, 
CD169, CD11b, and CD11c on the discovery panel (23 antibodies) (Bx3). 

Image analysis pipeline: Regions of interest (ROIs) were selected from hematoxylin-stained 
images reflecting histopathologic regions containing either primary or metastatic tumor foci via 
analysis in ImageScope (Leica). Digitally-acquired images were registered in MatLab 
(MathWorks) utilizing the SURF algorithm in the Computer Vision Toolbox. Nuclear 
segmentation and color deconvolution were performed using an in-house FIJI macro (Image J, 
NIH) for segmenting hematoxylin only stained tissue. In short, preprocessing to isolate signal 
and remove background was performed, then nuclear objects were identified by watershed and 
standard image processing (erosion, dilation, and noise removal). AEC chromogenic signal was 
extracted by converting images from RGB to CMYK in ImageJ with the NIH plugin 
RGB_to_CMYK. The contrast of AEC chromogen intensities on a 0-255 scale in the yellow 
channel, as compared to RGB or the built-in AEC deconvolution vector, utilized the full intensity 
scale without a threshold. First, each channel was normalized by dividing all pixels in each 
image by the max intensity of that image to rescale image intensity values to a range 0 - 1. 
Next, rescaled isolated signal from each stain was quantified for every indexed nuclear object 
by a pipeline created in Cell Profiler 3.1.5 (Broad Institute). Image cytometry hierarchical gating 
was performed in FCS Express Image Cytometry RUO 6.1.4 (DeNovo Software) to quantify 
distinct populations of cells with spatial context. 

Cyclic Immunofluorescence 

Immunohistochemical analyses of tumor tissue: FFPE human tissues were sectioned at 4 μm 
and mounted on adhesive slides (Mercedes Medical, TNR WHT45AD). The slides were baked 
overnight in an oven at 55 °C (Robbin Scientific, Model 1000) and an additional 30 minutes at 
65 °C (Clinical Scientific Equipment, NO. 100). Tissues were deparaffinized with xylene and 
rehydrated with graded ethanol baths. Two step antigen retrieval was performed in the 
Decloaking Chamber (Biocare Medical) using the following settings: set point 1 (SP1), 125 °C, 
30 seconds; SP2: 90 °C, 30 seconds; SP limit: 10 °C. Slides were further incubated in hot pH 9 
buffer for 15 minutes. Slides were then washed in two brief changes of diH2O (~2 seconds) and 
once for 5 minutes in 1x phosphate buffered saline (PBS), pH 7.4 (Fisher, BP39920). Sections 
were blocked in 10% normal goat serum (NGS, Vector S-1000), 1% bovine serum albumin 
(BSA, Sigma A7906) in PBS for 30 minutes at 20 °C in a humid chamber, followed by PBS 
washes. Primary antibodies (Table S2) were diluted in 5% NGS, 1% BSA in 1x PBS and applied 
overnight at 4° C in a humid chamber, covered with plastic coverslips (IHC World, IW-2601). 
Following overnight incubation, tissues were washed 3 x 10 min in 1x PBS. Coverslips (Corning; 
2980-243 or 2980-245) were mounted in Slowfade Gold plus DAPI mounting media (Life 
Technologies, S36938). 

Fluorescence Microscopy: Fluorescently stained slides were scanned on the Zeiss AxioScan.Z1 
(Zeiss, Germany) with a Colibri 7 light source (Zeiss). The filter cubes used for image collection 
were DAPI (Zeiss 96 HE), Alexa Fluor 488 (AF488, Zeiss 38 HE), AF555 (Zeiss 43 HE), AF647 
(Zeiss 50), and AF750 (Chroma 49007 ET Cy7). The exposure time was determined individually 
for each slide and stain to ensure good dynamic range but not saturation. Full tissue scans were 
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taken with the 20x objective (Plan-Apochromat 0.8NA WD=0.55, Zeiss) and stitching was 
performed in Zen Blue image acquisition software (Zeiss). 

Quenching Fluorescence Signal: After successful scanning, slides were soaked in 1x PBS for 
10 – 30 minutes in a glass Coplin jar, waiting until the glass coverslip slid off without agitation. 
Quenching solution containing 20 mM sodium hydroxide (NaOH) and 3% hydrogen peroxide 
(H2O2) in 1x PBS was freshly prepared from stock solutions of 5 M NaOH and 30% H2O2, and 
each slide placed in 10 ml quenching solution. Slides were quenched under incandescent light, 
for 30 minutes for FFPE tissue slides. Slides were then removed from the chamber with forceps 
and washed 3 x 2 min in 1x PBS. The next round of primary antibodies was applied, diluted in 
blocking buffer as previously described, and imaging and quenching were repeated over ten 
rounds for FFPE tissue slides. 

Cyclic IF quantification and analysis: Each image acquired during the Cyclic IF assay was 
registered based on DAPI features acquired from each round of staining (Young Hwan et al., 
2017). Cellpose, a generalist algorithm for cellular segmentation 
(https://www.biorxiv.org/content/10.1101/2020.02.02.931238v1), was used to generate nuclear 
and cell segmentation masks with a pre-trained neural network classifier. Extracted single-cell 
features included centroids and mean intensity of each marker from its biologically-relevant 
segmentation mask (e.g., Ecad_Cytoplasm, Ki67_Nuclei). The last round DAPI image was used 
to filter out cells lost during each round of Cyclic IF staining. 

For cell type determination and composition analysis, single cell mean intensities from each 
biopsy were log transformed and batch corrected using the scanpy regress_out function, which 
uses linear regression to remove batch variation (Wolf et al., 2018) . Single cell mean intensities 
from positive control tissues and cell lines stained with biopsy two (Bx2) were log transformed 
and z-scored. The batch corrected biopsy values were divided by the ratio of each marker’s 
mean intensity across all the positive control tissues to its mean intensity in Bx2, and all cells 
from the biopsy and control tissues were concatenated for clustering. Principal component 
analysis was performed with scanpy to reduce dimensionality, and unsupervised K-means 
clustering was performed on the principal components. The mean silhouette score of each value 
of k from 5 to 20 was calculated, and k=11 was selected for annotation, based on a relative 
maximum in mean silhouette score. 

Scanning Electron Microscopy 

Tissue for scanning electron microscopy (SEM) was collected at the time of biopsy and placed 
into SEM-specific fixative (2.5% paraformaldehyde, 2.5% glutaraldehyde in 0.1M sodium 
cacodylate buffer) as soon as possible for both pre-treatment and on-treatment biopsies. No 
tissue was collected for SEM from the third biopsy due to it originating from bone and 
decalcification protocols cannot yet reliably preserve ultrastructure for electron microscopy. 
Tissues were stored at 4oC in fixative and can remain that way nearly indefinitely. 

Tissue samples were prepared for SEM by implementing a post-fixation heavy metal infiltration 
followed by epoxy-resin embedding (Epon 812). Heavy metal staining using osmium tetroxide, 
uranyl acetate, and lead aspartate provided contrast for imaging by dissociating the metals and 
allowing them to bind to lipids and proteins within cellular membranes and organelles. After 
staining and resin embedding, polymerized blocks were mounted directly to SEM pin-style stubs 
and trimmed to create a flat surface using a Leica UC7 ultramicrotome equipped with Diatome 
diamond knives. Mounted blocks were conductively coated with 8-nm carbon using a Leica 
ACE600 coater. 

Two-dimensional large-format SEM maps were collected on trimmed block faces using a FEI 
Helios NanoLab G3 DualBeam™ focused ion beam-scanning electron microscope (FIB-SEM) 
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equipped with the Thermo Scientific Maps™ software package. Using this software for 
automation, hundreds of tiled images were collected over the entire block surface and stitched 
together, creating a pyramidal viewing architecture that provides observations starting at the 
millimeter-scale and zooms all the way down to 4-nm/pixel spatial resolution. Imaging conditions 
were 3 keV, 200-400 pA, 4-mm working distance, and 3 μs dwell time using the concentric 
backscatter detector (CBS). A script developed in-house converts these large maps into ome.tiff 
format for web-based viewing. 

Regions of interest for three-dimensional electron microscopy (3DEM) were selected from the 
high-resolution maps. Three separate 3DEM datasets collected using FIB-SEM technology were 
generated using vendor-specific automated serial-sectioning software: two high-resolution, 
small volumes (4-nm/voxel, 25 x 20 x 6-10 μm3) on each respective biopsy and one lower 
resolution, larger volume (10-nm/voxel, 48 x 48 x 17 μm3). The high-resolution image stacks 
were collected using the aforementioned Helios FIB-SEM with the same electron beam 
conditions and the In-Column Detector (ICD). The large volume was collected from the pre-
treatment biopsy using a Zeiss Crossbeam 550 FIB-SEM using 1.5 keV, 1.0 nA, 5-mm working 
distance, 1.6 μs dwell time, and the Energy-Selective Backscatter (EsB) detector. Segmentation 
of image stacks was performed manually in-house and by a CloudFactory managed workforce. 
Deep learning models developed in-house were utilized for nucleus and nucleoli segmentation 
on the high-resolution image stacks. 

A more detailed description of the fixation procedure, sample preparation protocol, and imaging 
workflow can be found in a recently published open access book chapter (Riesterer et al., 2020) 
and via protocols.io: 

“Sample fixation of biopsy tissue for Electron Microscopy (EM)” 
dx.doi.org/10.17504/protocols.io.4bigske 

“Post-Fixation Heavy Metal Staining and Resin Embedding for Electron Microscopy (EM)” 
dx.doi.org/10.17504/protocols.io.36vgre6 

“2D and 3D Electron Microscopy (EM) Imaging of Tissue Biopsies and Resections” 
dx.doi.org/10.17504/protocols.io.bg58jy9w 

All raw data, metadata, image stacks, and segmentation files are publicly available via the 
HTAN data portal and viewable via OMERO using the PathViewer plug-in. 

Stochastic Optical Reconstruction Microscopy 

SKBR3 cells (ATCC HTB0-30) were cultured in McCoy’s 5A medium (Thermo Fisher Scientific 
16600082) supplemented with 10% FBS (Thermo Fisher Scientific 10082147). For Stochastic 
Optical Reconstruction Microscopy (STORM) experiments, the cells were plated in LabTek 
chambered coverglass (Thermo Fisher Scientific 155409) for 36 to 48 hours before labeling and 
imaging. To prepare for imaging, the cells were first serum starved overnight (~16 hr); on the 
day of imaging, the cells were treated with 100 nM Alexa Fluor 647 conjugated trastuzumab for 
~15 min, washed with pre-warmed blank medium, and placed on the microscope stage for 
imaging. Next, fresh STORM imaging buffer was added at 1:1,000 v/v dilution to the medium; 
the buffer is PBS supplemented with 0.5 mg/mL glucose oxidase (Sigma-Aldrich, G2133–50 
kU), 40 μ g/mL catalase (Sigma-Aldrich, C100-50MG), and 10% D-Glucose (w/v, Fisher 
Chemicals D16–500); this was followed by addition of 10 mM (final concentration) 
mercaptoethylamine (MEA; Sigma-Aldrich, 30070). The sample was then explored at low 647 
nm laser power (~100 W/cm2; this avoids unnecessary loss of AF647 due to photobleaching) to 
identify regions of interest. EGF (Cell Signaling 8916) was diluted from a 1 mg/mL stock in PBS 
to 10 mg/mL and then added to the cell culture at 1:100 v/v dilution to yield a final concentration 
of 10 ng/mL. Image acquisition was initiated right after adding EGF as described below. 
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Throughout the imaging process, the cells were kept in an on-stage incubator (TokaiHit) at 37°C 
with 5% CO2. 

The STORM microscope setup was the same as described previously (Creech et al., 2017). 
Briefly, a custom single-molecule fluorescence imaging setup was built on a Nikon Ti-U 
microscope frame, with other essential components including an objective lens with high 
numerical aperture (Nikon 60x oil, TIRF, NA = 1.49), a 647 nm laser (Coherent OBIS, max 
output = 140 mW; for exciting and converting AF647 into a dark state), a 405 nm laser 
(Coherent CUBE; for converting AF647 to fluorescent on-state), and an EM-CCD (Evolve 512 
Delta, Photometrics), as well as other components including dichroic mirrors and emission 
filters. Image acquisition was performed using micromanager (Edelstein et al., 2010) with an 
EM-CCD gain setting typically set at 300 and the frame acquisition time 8 ms (possible by 
selecting a small region of interest). Typical power densities for the 647 nm and the 405 nm 
lasers were 1-2 kW/cm2 and 1-20 W/cm2, respectively. Raw STORM images were processed 
and reconstructed using custom Matlab scripts (Nickerson et al., 2015). 

Alexa Fluor 647 conjugated trastuzumab was prepared using Alexa Fluor 647 NHS-ester 
(Thermo Fisher Scientific A37566) and purified according to manufacturer recommended 
procedures; the final dye to antibody conjugation ratio was measured to be around 2:1 using a 
UV-Vis spectrometer. 

Supplemental Information 

Figure S1. Related to Figure 2 

A) Maximum intensity projection (MIP) FDG-PET from the beginning of Phase 1 treatment 
demonstrates multifocal FDG avid disease throughout the mediastinum, liver, spleen and 
skeleton, including target of Bx1 (arrow). B) Axial FDG-PET (from same timepoint as A) 
superimposed on CT showing FDG avid segment 6 liver lesion targeted by Bx1. C) Ultrasound 
image from Bx1. D) Axial contrast enhanced CT taken just before Bx2 demonstrates interval 
growth of a separate segment 5,6 liver lesion subsequently targeted by Bx2. E) Ultrasound 
image from Bx2. F) FDG-PET MIP image from the beginning of Phase 3 demonstrates a 
decrease in FDG avid lesions. Bx2 targeted lesion indicated (arrow). G) FDG-PET taken in 
Phase 3 one month before Bx3 demonstrates new FDG avid lesions in the L4 vertebral body, 
including the Bx3 targeted lesion (arrow). H) Axial FDG-PET (from same timepoint as G) 
superimposed on attenuation correction CT showing FDG avid segment targeted by Bx3. I) CT 
image from Bx3 demonstrates successful biopsy of the FDG avid, lytic lesion within the L4 
vertebral body. Note the patient is prone during the biopsy. J) FDG-PET from the end of Phase 
3 demonstrates continued response in most organs but a possible new progressing lesion within 
the liver (arrow). K) Axial FDG-PET (from same timepoint as J) superimposed on CT showing 
FDG avid possible liver lesion (arrow). L) Axial contrast enhanced CT taken during month 37 
demonstrates nodular, heterogeneous, morphology of the liver showing signs of pseudocirrhosis 
(arrow). 

Figure S2. Related to Figure 2 

(A) Treatment schedule and biopsy timing (red stars) over the course of three phases of 
treatment (red, blue, and green areas). Individual drug’s duration of treatment (bar width 
proportional to dose) and continuation after the end of Phase 3 (right pointing arrow), as 
indicated. (B) Clinically reported Absolute Neutrophil Count (ANC) in thousands per cubic 
millimeter (K/cu mm). (C) Clinically reported Platelet Count in thousands per cubic millimeter 
(K/cu mm). (D) Clinically reported results of liver function tests, including alkaline phosphatase 
(ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). (E) Longitudinal 
tracking of the average circulating tumor DNA (ctDNA) Variant Allele Frequency (VAF) of four 
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different groups of mutations: Variants private to Bx1 (Bx1), private to Bx2 (Bx2), shared 
between the primary, Bx1, and Bx2 (Bx1_Bx2_Primary), and shared by Bx1 and Bx2 but not the 
primary (Bx1_Bx2). Red boxed inset shows expanded ctDNA VAF timeline during a course of 
palliative radiotherapy during months 10-12. Red asterisks indicate dates of individual radiation 
fractions given. 

Figure S3. Related to Figure 3 

A) Single Nucleotide Variants and Insertion-Deletions were identified from whole exome 
sequencing of tissue samples and circulating tumor DNA from peripheral blood and classified as 
Ubiquitous (blue), Shared (green), or Private (red) (variants private to ctDNA timepoints not 
shown). Variants detected in at least 2 reads but not independently called are shown with 
reduced opacity. B) Comparison of copy number profiles. Scatter plots of copy number profiles 
from all four tissue samples: Primary (pink), Biopsy 1 (green), Biopsy 2 (orange), and Biopsy 3 
(purple). C) Molecular Subtype. Bar plots show the Pearson correlation of the Primary (pink), 
Bx1 (green), Bx2 (orange), and Bx3 (purple) samples to the PAM50 subtype centroids. D) 
Integrated multi-omic pathway analysis. Pathway diagrams represent the integration of protein 
abundance (rectangles), phosphoprotein abundance (circle labeled ‘P’; green outline indicates 
activating; red outline indicates inactivating), gene expression (circle labeled ‘E’), and 
transcriptional regulator activity (circle labeled ‘R’), and show the change in Bx2 relative to Bx1. 
The red and blue fill represent higher and lower expression/activity, respectively. E) Integrated 
multi-omic comparisons. The heatmap represents the change in Bx2 relative to Bx1 scaled (-
1,1) expression/activity, with red representing an increase and blue representing a decrease in 
expression/activity, respectively. Grey indicates a gene or protein that is not measured by the 
assay or analysis. The row annotation bar indicates the pathway to which the genes/proteins 
belong. 

Figure S4. Related to Figure 4 

Hierarchical gating via image cytometry for identification of cell types and functional states 
elaborated by mIHC for: (A) myeloid, (B) lymphoid, (C) functional, and (D) discovery panel of 
antibodies. 

Figure S5. Related to Figure 5  

(A) Left panel: Clusters’ composition bar plots of all cells in Bx1, Bx2, and Bx3, as well as 
reference tissues that were stained and processed with the Bx2 tumor. The 11 clustered cell 
subpopulations (0-10, left) based on unsupervised clustering analysis of CycIF image data 
(indicated by colors for tissue origins) are displayed. The cluster identities, matched to Figure 
5A, are as follows: 0: Basal Ki-67 -- cells expressing basal cytokeratin (CK5, CK14, and CK17). 
1: Mesenchymal Ki-67 -- cells expressing Vimentin, CD44 with Ki-67 and/or PCNA; 2: 
Lum/Basal: cells expressing both luminal cytokeratins (CK7 and CK19) and basal cytokeratins 
(CK5, CK14, and CK17), but not proliferation markers (Ki-67 and PCNA). 3: Immune (lymphoid) 
-- cells expressing one or more of CD45, CD3, CD4, and CD8. 4: Immune (myeloid) -- cells 
expressing CD68. 5: HER2 -- this cluster is only composed of HER2 positive cells that are 
mostly found in HER2 luminal, BT474, and AU55 cell lines but not in Bx1/Bx2/Bx3 tissues. 6: 
Lum ERhi -- cells expressing luminal cytokeratins (CK7 and CK19) and high levels of ER. 7: 
Endothelial/Fibroblast -- two types of cells were lumped in this cluster. Cells expressing CD31 
represent blood vessels. Cells expressing Vimentin or alpha smooth muscle actin represent 
mainly stromal fibroblasts, which are often present near CD31 positive endothelial cells. 8: 
Basal -- cells expressing basal cytokeratins (CK5, CK14, and CK19). 9: Lum ERmed Ki-67 -- cells 
expressing luminal cytokeratins (CK7 and CK19), E-cadherin, and intermediate level ER and Ki-
67 or PCNA. 10: Lum ERhi PCNA -- cells expressing luminal cytokeratins (CK7 and CK19) and 
high-level ER and PCNA. Right panel: Combined fraction and stacked bar plots of Bx1, Bx2, 
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and Bx3 tumors in each cluster. (B) The panels show alternative composite views of Figure 5B 
with ER (green), Ki-67 (red), CK19 (turquoise), and nuclei (gray) in the same regions of interest 
in each tumor with low (top panels) and high (bottom panels) magnifications. The scale bars 
indicate 50 µm and 20 µm, respectively, in low and high-power views. (C) Left panel: Cell type 
composition bar plot of all cells as described in (A). The cells in tumor, immune, and stroma are 
indicated by colors of cyan, green, and magenta, respectively. Right panel: Calculated Shannon 
Index (entropy) in each tissue is shown, representing the rate of heterogeneity based on the cell 
types defined in CycIF image analysis. The index was obtained from single cell-based spatial 
analysis by counting cells and attributing cell type within 75 µm radius area from each cell. The 
order of tissues is coordinated in the two panels. (D) The results of further independent 
clustering for epithelial cells (left: clusters 0,1,2,5,6,8,9,10) and non-epithelial cells (right: 
clusters 3,4,7), i.e., supervised clustering analysis, are shown in two heatmaps (Z-Score) and 
composition changes of clustered subpopulations in Bx1, Bx2, and Bx3 are displayed under the 
corresponding heatmap. 

Figure S6. Related to Figure 6 

(A) The top-down, high-resolution blockface maps collected via SEM from Bx1 and Bx2 in the 
left column showing heterogeneity both intra-tumor and translationally. Bx1 shows well-defined 
nests of tumor cells separated by thick bands of collagen, while Bx2 shows nests, but the tissue 
is denser and collagen band thickness is reduced. The boxes marked on the maps measure 25 
µm in the long direction and indicate where 3D FIB-SEM was collected. The right column shows 
the respective first slice from the 3D FIB-SEM volumes. Ultrastructural features of interest are 
marked as the following: (IN) invaginated nuclei, (FN) fenestrated nucleoli, (M) mitochondria, (L) 
lysosome, (S) stroma, (F) filopodia, (La) lamellipodia, and (MP) macropinosomes. (B) Filopodia-
like protrusions (FLPs) direct EGF-induced cell movement of SKBR3 cells. Time-lapse 
stochastic optical reconstruction microscopy (STORM) images of SKBR3 cells labeled with 
Alexa Fluor 647-conjugated Herceptin, showing abundant FLPs decorated by HER2. Left image 
shows initial positions of the FLPs upon addition of EGF (10 ng/mL at around -30 s). Right 
image shows the same field of view after 1:30 min (90 s). The cyan crosses (1, 2, and 3) mark 
the original locations of the tips of corresponding FLPs. Scale bars, 1 mm. 

Table S1. Related to Figure 2 

Clinical metadata. Includes dates of all individual drug doses, results of serum tumor protein 
biomarker assays, neutrophil and platelet counts, liver function tests, CT and FDG-PET lesion 
measurements, and clinically reported immunohistochemical (IHC) assay results. 

Table S2. Related to Figures 3-5 

Exploratory analytic information. Includes gene set variation analysis scores of Reactome and 
MSigDB databases (RNAseq), transcriptional regulator activity scores (RNAseq), pathway 
signature analysis scores (RPPA), antibody panels used (mIHC and CycIF), and classification of 
immune cell types by marker expression (mIHC). 

Movie S1. Related to Figure 6 

The 3D FIB-SEM volume collected at 4 nm/voxel resolution from Bx1 showing ultrastructural 
features at the nanoscale. Individual cell contours are rendered and illustrate the cell-cell and 
cell-stromal interactions. Aberrant nuclear morphology, clustered macropinosomes, organized 
mitochondria, and the presence of lysosomes are all observed in the 25 x 20 x 6 μm3 volume. 

Movie S2. Related to Figure 6 

The 3D FIB-SEM volume collected at 4 nm/voxel resolution from Bx2 shows ultrastructural 
features at the nanoscale in a 25 x 20 x 10 μm3 volume. Similar to the Bx1 volume, aberrant 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


 32

nuclear morphology, clustered macropinosomes, organized mitochondria, and the presence of 
lysosomes are all observed. However, the cell-cell interactions are remarkable. The center 
tumor cell squeezing between the surrounding cells is observed to have micron-long 
protrusions, while its neighbors have clear lamellipodia. 

Movie S3. Related to Figure 6 

A larger 3D FIB-SEM volume (60 x 40 x 18 μm3) collected at 10 nm/voxel resolution of Bx1 
shows tumor nest interaction with the fibroblasts in the stroma. The fibroblasts in blue are 
interacting with the red cancer cells and wrapping themselves around the nest to form a barrier. 
In this case, the fibroblasts closest to the nest are observed to be blebbing. 

Movie S4. Related to Figure 6 

Live cell stochastic optical reconstruction microscopy (STORM) imaging of HER2 in a SKBR3 
(HER2+ breast cancer) cell immediately after EGF treatment (at 10 ng/mL), highlighting the 
dynamics of HER2-enriched FLPs during a ~4 minute period. Note that the tips of most FLPs 
remained at their original locations and the cell body extended significantly in the form of 
lamellipodia toward the tips of the FLPs. 

References 

Adurthi, S., Kumar, M.M., Vinodkumar, H.S., Mukherjee, G., Krishnamurthy, H., Acharya, K.K., 
Bafna, U.D., Uma, D.K., Abhishekh, B., Krishna, S., et al. (2017). Oestrogen Receptor-alpha 
binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer. 
Sci Rep 7, 17289. 

Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Cech, M., Chilton, J., Clements, 
D., Coraor, N., Gruning, B.A., et al. (2018). The Galaxy platform for accessible, reproducible 
and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46, W537-W544. 

Akbani, R., Ng, P.K., Werner, H.M., Shahmoradgoli, M., Zhang, F., Ju, Z., Liu, W., Yang, J.Y., 
Yoshihara, K., Li, J., et al. (2014). A pan-cancer proteomic perspective on The Cancer Genome 
Atlas. Nat Commun 5, 3887. 

Allan, C., Burel, J.M., Moore, J., Blackburn, C., Linkert, M., Loynton, S., Macdonald, D., Moore, 
W.J., Neves, C., Patterson, A., et al. (2012). OMERO: flexible, model-driven data management 
for experimental biology. Nat Methods 9, 245-253. 

Banik, G., Betts, C.B., Liudahl, S.M., Sivagnanam, S., Kawashima, R., Cotechini, T., Larson, 
W., Goecks, J., Pai, S.I., Clayburgh, D.R., et al. (2020). High-dimensional multiplexed 
immunohistochemical characterization of immune contexture in human cancers. Methods 
Enzymol 635, 1-20. 

Barros, M.H., Hauck, F., Dreyer, J.H., Kempkes, B., and Niedobitek, G. (2013). Macrophage 
polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS 
One 8, e80908. 

Buechler, C., Ritter, M., Orso, E., Langmann, T., Klucken, J., and Schmitz, G. (2000). 
Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by 
pro- and antiinflammatory stimuli. J Leukoc Biol 67, 97-103. 

Butler, T.M., Boniface, C.T., Johnson-Camacho, K., Tabatabaei, S., Melendez, D., Kelley, T., 
Gray, J., Corless, C.L., and Spellman, P.T. (2019). Circulating tumor DNA dynamics using 
patient-customized assays are associated with outcome in neoadjuvantly treated breast cancer. 
Cold Spring Harb Mol Case Stud 5. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


 33

Cancer Genome Atlas, N. (2012). Comprehensive molecular portraits of human breast tumours. 
Nature 490, 61-70. 

Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., Schultz, N., Bader, 
G.D., and Sander, C. (2011). Pathway Commons, a web resource for biological pathway data. 
Nucleic Acids Res 39, D685-690. 

Chen, M.M., Li, J., Wang, Y., Akbani, R., Lu, Y., Mills, G.B., and Liang, H. (2019). TCPA v3.0: 
An Integrative Platform to Explore the Pan-Cancer Analysis of Functional Proteomic Data. Mol 
Cell Proteomics 18, S15-S25. 

Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., 
Meyerson, M., Lander, E.S., and Getz, G. (2013). Sensitive detection of somatic point mutations 
in impure and heterogeneous cancer samples. Nat Biotechnol 31, 213-219. 

Commisso, C., Davidson, S.M., Soydaner-Azeloglu, R.G., Parker, S.J., Kamphorst, J.J., 
Hackett, S., Grabocka, E., Nofal, M., Drebin, J.A., Thompson, C.B., et al. (2013). 
Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 
633-637. 

Creech, M.K., Wang, J., Nan, X., and Gibbs, S.L. (2017). Superresolution Imaging of Clinical 
Formalin Fixed Paraffin Embedded Breast Cancer with Single Molecule Localization 
Microscopy. Sci Rep 7, 40766. 

Desir, S., O'Hare, P., Vogel, R.I., Sperduto, W., Sarkari, A., Dickson, E.L., Wong, P., Nelson, 
A.C., Fong, Y., Steer, C.J., et al. (2018). Chemotherapy-Induced Tunneling Nanotubes Mediate 
Intercellular Drug Efflux in Pancreatic Cancer. Sci Rep 8, 9484. 

Edelstein, A., Amodaj, N., Hoover, K., Vale, R., and Stuurman, N. (2010). Computer control of 
microscopes using microManager. Curr Protoc Mol Biol Chapter 14, Unit14 20. 

Eng, J., Thibault, G., Luoh, S.W., Gray, J.W., Chang, Y.H., and Chin, K. (2020). Cyclic 
Multiplexed-Immunofluorescence (cmIF), a Highly Multiplexed Method for Single-Cell Analysis. 
Methods Mol Biol 2055, 521-562. 

Ethier, J.L., Desautels, D., Templeton, A., Shah, P.S., and Amir, E. (2017). Prognostic role of 
neutrophil-to-lymphocyte ratio in breast cancer: a systematic review and meta-analysis. Breast 
Cancer Res 19, 2. 

Fassl, A., Brain, C., Abu-Remaileh, M., Stukan, I., Butter, D., Stepien, P., Feit, A.S., Bergholz, 
J., Michowski, W., Otto, T., et al. (2020). Increased lysosomal biomass is responsible for the 
resistance of triple-negative breast cancers to CDK4/6 inhibition. Sci Adv 6, eabb2210. 

Hafner, M., Mills, C.E., Subramanian, K., Chen, C., Chung, M., Boswell, S.A., Everley, R.A., Liu, 
C., Walmsley, C.S., Juric, D., et al. (2019). Multiomics Profiling Establishes the 
Polypharmacology of FDA-Approved CDK4/6 Inhibitors and the Potential for Differential Clinical 
Activity. Cell Chem Biol 26, 1067-1080 e1068. 

Hanahan, D., and Coussens, L.M. (2012). Accessories to the crime: functions of cells recruited 
to the tumor microenvironment. Cancer Cell 21, 309-322. 

Hanzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics 14, 7. 

Herrera-Abreu, M.T., Palafox, M., Asghar, U., Rivas, M.A., Cutts, R.J., Garcia-Murillas, I., 
Pearson, A., Guzman, M., Rodriguez, O., Grueso, J., et al. (2016). Early Adaptation and 
Acquired Resistance to CDK4/6 Inhibition in Estrogen Receptor-Positive Breast Cancer. Cancer 
Res 76, 2301-2313. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


 34

Hosios, A.M., Hecht, V.C., Danai, L.V., Johnson, M.O., Rathmell, J.C., Steinhauser, M.L., 
Manalis, S.R., and Vander Heiden, M.G. (2016). Amino Acids Rather than Glucose Account for 
the Majority of Cell Mass in Proliferating Mammalian Cells. Dev Cell 36, 540-549. 

Iida, M., Nakamura, M., Tokuda, E., Toyosawa, D., Niwa, T., Ohuchi, N., Ishida, T., and 
Hayashi, S.I. (2019). The p21 levels have the potential to be a monitoring marker for ribociclib in 
breast cancer. Oncotarget 10, 4907-4918. 

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., Cook, 
J., Gillespie, M., Haw, R., et al. (2020). The reactome pathway knowledgebase. Nucleic Acids 
Res 48, D498-D503. 

Kang, S., Bader, A.G., and Vogt, P.K. (2005). Phosphatidylinositol 3-kinase mutations identified 
in human cancer are oncogenic. Proc Natl Acad Sci U S A 102, 802-807. 

Kennedy, S.R., Schmitt, M.W., Fox, E.J., Kohrn, B.F., Salk, J.J., Ahn, E.H., Prindle, M.J., 
Kuong, K.J., Shen, J.C., Risques, R.A., et al. (2014). Detecting ultralow-frequency mutations by 
Duplex Sequencing. Nat Protoc 9, 2586-2606. 

Kerber, M.L., and Cheney, R.E. (2011). Myosin-X: a MyTH-FERM myosin at the tips of filopodia. 
J Cell Sci 124, 3733-3741. 

Kim, J., and Guan, K.L. (2019). mTOR as a central hub of nutrient signalling and cell growth. 
Nat Cell Biol 21, 63-71. 

Knochelmann, H.M., Dwyer, C.J., Bailey, S.R., Amaya, S.M., Elston, D.M., Mazza-McCrann, 
J.M., and Paulos, C.M. (2018). When worlds collide: Th17 and Treg cells in cancer and 
autoimmunity. Cell Mol Immunol 15, 458-469. 

Labrie, M., Fang, Y., Kendsersky, N.D., Li, J., Liang, H., Westin, S.N., Mitri, Z., and Mills, G.B. 
(2019a). Using Reverse Phase Protein Array (RPPA) to Identify and Target Adaptive 
Resistance. Adv Exp Med Biol 1188, 251-266. 

Labrie, M., Kim, T.B., Ju, Z., Lee, S., Zhao, W., Fang, Y., Lu, Y., Chen, K., Ramirez, P., 
Frumovitz, M., et al. (2019b). Adaptive responses in a PARP inhibitor window of opportunity trial 
illustrate limited functional interlesional heterogeneity and potential combination therapy options. 
Oncotarget 10, 3533-3546. 

Lee, J., Geiss, G.K., Demirkan, G., Vellano, C.P., Filanoski, B., Lu, Y., Ju, Z., Yu, S., Guo, H., 
Bogatzki, L.Y., et al. (2018). Implementation of a Multiplex and Quantitative Proteomics Platform 
for Assessing Protein Lysates Using DNA-Barcoded Antibodies. Mol Cell Proteomics 17, 1245-
1258. 

Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E., and Storey, J.D. (2012). The sva package 
for removing batch effects and other unwanted variation in high-throughput experiments. 
Bioinformatics 28, 882-883. 

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping 
and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-
2993. 

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler 
transform. Bioinformatics 26, 589-595. 

Li, R., Waga, S., Hannon, G.J., Beach, D., and Stillman, B. (1994). Differential effects by the 
p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371, 534-537. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


 35

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P., and Tamayo, P. (2015). 
The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1, 417-
425. 

Lin, J.R., Fallahi-Sichani, M., and Sorger, P.K. (2015). Highly multiplexed imaging of single cells 
using a high-throughput cyclic immunofluorescence method. Nat Commun 6, 8390. 

Liu, Y., Dong, Y., Kong, L., Shi, F., Zhu, H., and Yu, J. (2018). Abscopal effect of radiotherapy 
combined with immune checkpoint inhibitors. J Hematol Oncol 11, 104. 

Llanos, S., Megias, D., Blanco-Aparicio, C., Hernandez-Encinas, E., Rovira, M., Pietrocola, F., 
and Serrano, M. (2019). Lysosomal trapping of palbociclib and its functional implications. 
Oncogene 38, 3886-3902. 

Marangoni, E., Laurent, C., Coussy, F., El-Botty, R., Chateau-Joubert, S., Servely, J.L., de 
Plater, L., Assayag, F., Dahmani, A., Montaudon, E., et al. (2018). Capecitabine Efficacy Is 
Correlated with TYMP and RB1 Expression in PDX Established from Triple-Negative Breast 
Cancers. Clin Cancer Res 24, 2605-2615. 

Massarweh, S., Romond, E., Black, E.P., Van Meter, E., Shelton, B., Kadamyan-Melkumian, V., 
Stevens, M., and Elledge, R. (2014). A phase II study of combined fulvestrant and everolimus in 
patients with metastatic estrogen receptor (ER)-positive breast cancer after aromatase inhibitor 
(AI) failure. Breast Cancer Res Treat 143, 325-332. 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., 
Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: a MapReduce 
framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303. 

Merker, J.D., Oxnard, G.R., Compton, C., Diehn, M., Hurley, P., Lazar, A.J., Lindeman, N., 
Lockwood, C.M., Rai, A.J., Schilsky, R.L., et al. (2018). Circulating Tumor DNA Analysis in 
Patients With Cancer: American Society of Clinical Oncology and College of American 
Pathologists Joint Review. J Clin Oncol 36, 1631-1641. 

Mi, W., Ye, Q., Liu, S., and She, Q.B. (2015). AKT inhibition overcomes rapamycin resistance 
by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis. Oncotarget 6, 
13962-13977. 

Mitri, Z.I., Parmar, S., Johnson, B., Kolodzie, A., Keck, J.M., Morris, M., Guimaraes, A.R., 
Beckett, B.R., Borate, U., Lopez, C.D., et al. (2018). Implementing a comprehensive 
translational oncology platform: from molecular testing to actionability. J Transl Med 16, 358. 

Molania, R., Gagnon-Bartsch, J.A., Dobrovic, A., and Speed, T.P. (2019). A new normalization 
for Nanostring nCounter gene expression data. Nucleic Acids Res 47, 6073-6083. 

Montoya, J.A., Figueroa, G.P., and González-Sánchez, D. (2019). Statistical inference for the 
Weitzman overlapping coefficient in a family of distributions. Applied Mathematical Modelling 71, 
558-568. 

Need, E.F., Selth, L.A., Harris, T.J., Birrell, S.N., Tilley, W.D., and Buchanan, G. (2012). 
Research resource: interplay between the genomic and transcriptional networks of androgen 
receptor and estrogen receptor alpha in luminal breast cancer cells. Mol Endocrinol 26, 1941-
1952. 

Nelson, E.K., Piehler, B., Eckels, J., Rauch, A., Bellew, M., Hussey, P., Ramsay, S., Nathe, C., 
Lum, K., Krouse, K., et al. (2011). LabKey Server: an open source platform for scientific data 
integration, analysis and collaboration. BMC Bioinformatics 12, 71. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


 36

Nickerson, A., Huang, T., Lin, L.J., and Nan, X. (2015). Photoactivated Localization Microscopy 
with Bimolecular Fluorescence Complementation (BiFC-PALM). J Vis Exp, e53154. 

O'Reilly, K.E., Rojo, F., She, Q.B., Solit, D., Mills, G.B., Smith, D., Lane, H., Hofmann, F., 
Hicklin, D.J., Ludwig, D.L., et al. (2006). mTOR inhibition induces upstream receptor tyrosine 
kinase signaling and activates Akt. Cancer Res 66, 1500-1508. 

Ogawa, L.M., and Baserga, S.J. (2017). Crosstalk between the nucleolus and the DNA damage 
response. Mol Biosyst 13, 443-455. 

Palm, W., Park, Y., Wright, K., Pavlova, N.N., Tuveson, D.A., and Thompson, C.B. (2015). The 
Utilization of Extracellular Proteins as Nutrients Is Suppressed by mTORC1. Cell 162, 259-270. 

Paradis, E., and Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and 
evolutionary analyses in R. Bioinformatics 35, 526-528. 

Paraiso, K.H., and Smalley, K.S. (2013). Fibroblast-mediated drug resistance in cancer. 
Biochem Pharmacol 85, 1033-1041. 

Parker, J.S., Mullins, M., Cheang, M.C., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, 
C., He, X., Hu, Z., et al. (2009). Supervised risk predictor of breast cancer based on intrinsic 
subtypes. J Clin Oncol 27, 1160-1167. 

Pauken, K.E., and Wherry, E.J. (2015). Overcoming T cell exhaustion in infection and cancer. 
Trends Immunol 36, 265-276. 

Peixoto, L., Risso, D., Poplawski, S.G., Wimmer, M.E., Speed, T.P., Wood, M.A., and Abel, T. 
(2015). How data analysis affects power, reproducibility and biological insight of RNA-seq 
studies in complex datasets. Nucleic Acids Res 43, 7664-7674. 

Riesterer, J.L., Lopez, C.S., Stempinski, E.S., Williams, M., Loftis, K., Stoltz, K., Thibault, G., 
Lanicault, C., Williams, T., and Gray, J.W. (2020). A workflow for visualizing human cancer 
biopsies using large-format electron microscopy. Methods Cell Biol 158, 163-181. 

Risso, D., Ngai, J., Speed, T.P., and Dudoit, S. (2014). Normalization of RNA-seq data using 
factor analysis of control genes or samples. Nat Biotechnol 32, 896-902. 

Robinson, D.R., Wu, Y.M., Vats, P., Su, F., Lonigro, R.J., Cao, X., Kalyana-Sundaram, S., 
Wang, R., Ning, Y., Hodges, L., et al. (2013). Activating ESR1 mutations in hormone-resistant 
metastatic breast cancer. Nat Genet 45, 1446-1451. 

Rodchenkov, I., Babur, O., Luna, A., Aksoy, B.A., Wong, J.V., Fong, D., Franz, M., Siper, M.C., 
Cheung, M., Wrana, M., et al. (2020). Pathway Commons 2019 Update: integration, analysis 
and exploration of pathway data. Nucleic Acids Res 48, D489-D497. 

Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J.E., 
Ashenberg, O., Cerami, E., Coffey, R.J., Demir, E., et al. (2020). The Human Tumor Atlas 
Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell 
181, 236-249. 

Saki, M., and Prakash, A. (2017). DNA damage related crosstalk between the nucleus and 
mitochondria. Free Radic Biol Med 107, 216-227. 

Schietinger, A., Philip, M., Krisnawan, V.E., Chiu, E.Y., Delrow, J.J., Basom, R.S., Lauer, P., 
Brockstedt, D.G., Knoblaugh, S.E., Hammerling, G.J., et al. (2016). Tumor-Specific T Cell 
Dysfunction Is a Dynamic Antigen-Driven Differentiation Program Initiated Early during 
Tumorigenesis. Immunity 45, 389-401. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


 37

Sherr, C.J., Beach, D., and Shapiro, G.I. (2016). Targeting CDK4 and CDK6: From Discovery to 
Therapy. Cancer Discov 6, 353-367. 

Soneson, C., Love, M.I., and Robinson, M.D. (2016). Differential analyses for RNA-seq: 
transcript-level estimates improve gene-level inferences. F1000 Reseearch. 

Spring, L.M., Wander, S.A., Andre, F., Moy, B., Turner, N.C., and Bardia, A. (2020). Cyclin-
dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, 
and future. Lancet 395, 817-827. 

Tai, P., Wang, J., Jin, H., Song, X., Yan, J., Kang, Y., Zhao, L., An, X., Du, X., Chen, X., et al. 
(2008). Induction of regulatory T cells by physiological level estrogen. J Cell Physiol 214, 456-
464. 

Talevich, E., Shain, A.H., Botton, T., and Bastian, B.C. (2016). CNVkit: Genome-Wide Copy 
Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol 12, 
e1004873. 

Tatlow, P.J., and Piccolo, S.R. (2016). A cloud-based workflow to quantify transcript-expression 
levels in public cancer compendia. Sci Rep 6, 39259. 

Tibes, R., Qiu, Y., Lu, Y., Hennessy, B., Andreeff, M., Mills, G.B., and Kornblau, S.M. (2006). 
Reverse phase protein array: validation of a novel proteomic technology and utility for analysis 
of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5, 2512-2521. 

Toy, W., Shen, Y., Won, H., Green, B., Sakr, R.A., Will, M., Li, Z., Gala, K., Fanning, S., King, 
T.A., et al. (2013). ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. 
Nat Genet 45, 1439-1445. 

Tsujikawa, T., Kumar, S., Borkar, R.N., Azimi, V., Thibault, G., Chang, Y.H., Balter, A., 
Kawashima, R., Choe, G., Sauer, D., et al. (2017). Quantitative Multiplex Immunohistochemistry 
Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis. Cell 
Rep 19, 203-217. 

Tsujikawa, T., Thibault, G., Azimi, V., Sivagnanam, S., Banik, G., Means, C., Kawashima, R., 
Clayburgh, D.R., Gray, J.W., Coussens, L.M., et al. (2019). Robust Cell Detection and 
Segmentation for Image Cytometry Reveal Th17 Cell Heterogeneity. Cytometry A 95, 389-398. 

Vilgelm, A.E., Saleh, N., Shattuck-Brandt, R., Riemenschneider, K., Slesur, L., Chen, S.C., 
Johnson, C.A., Yang, J., Blevins, A., Yan, C., et al. (2019). MDM2 antagonists overcome 
intrinsic resistance to CDK4/6 inhibition by inducing p21. Sci Transl Med 11. 

Villamil Giraldo, A.M., Appelqvist, H., Ederth, T., and Ollinger, K. (2014). Lysosomotropic 
agents: impact on lysosomal membrane permeabilization and cell death. Biochem Soc Trans 
42, 1460-1464. 

Wagner, A.H., Walsh, B., Mayfield, G., Tamborero, D., Sonkin, D., Krysiak, K., Deu-Pons, J., 
Duren, R.P., Gao, J., McMurry, J., et al. (2020). A harmonized meta-knowledgebase of clinical 
interpretations of somatic genomic variants in cancer. Nat Genet 52, 448-457. 

Wculek, S.K., Cueto, F.J., Mujal, A.M., Melero, I., Krummel, M.F., and Sancho, D. (2020). 
Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20, 7-24. 

Wijayaratne, A.L., and McDonnell, D.P. (2001). The human estrogen receptor-alpha is a 
ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and 
selective estrogen receptor modulators. J Biol Chem 276, 35684-35692. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


 38

Wittmann, B.M., Sherk, A., and McDonnell, D.P. (2007). Definition of functionally important 
mechanistic differences among selective estrogen receptor down-regulators. Cancer Res 67, 
9549-9560. 

Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene 
expression data analysis. Genome Biol 19, 15. 

Young Hwan, C., Thibault, G., Madin, O., Azimi, V., Meyers, C., Johnson, B., Link, J., Margolin, 
A., and Gray, J.W. (2017). Deep learning based Nucleus Classification in pancreas histological 
images. Annu Int Conf IEEE Eng Med Biol Soc 2017, 672-675. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408500doi: bioRxiv preprint 

View publication statsView publication stats

https://doi.org/10.1101/2020.12.03.408500
http://creativecommons.org/licenses/by/4.0/
https://www.researchgate.net/publication/346632754

