
Hiv
collaborativ
e data space

Labkey Users Conference
User-centric design for research tools: The CDS as a case study
September, 2012

Hiv
collaborative
data space

1. Design is more about making
the right thing than how it
looks.

2. The process is available to you.

ARTEFACT ON WOOD BG

MOBILE S AFRICA OR PATH

SWYP WITH WVIL

IMPACT

SALES WORKFLOW IN VISIO OR IA IN
ILLUSTRATOR?

Collaborative
DataSpace (CDS)

A web application for HIV
vaccine researchers to
collaborate with shared
work and data.

Ellen Turk

What could
you do with
aggregate
data that
you can’t do
now?

How should
this tool
relate to all
the other
tools in use?

How should
information
be
organized?

What are
specific
privacy
concerns
and how can
we overcome
them?

Do people
really want
to
collaborate
in here?
How?

Can people
use this?

1. Design is more
about making the right
thing than how it
looks.

What is CDS not?
Dropbox / Atlas: directory and file-based sharing without added value

Completely public to 7 billion people

A specialized Wikipedia

The end of clarifying phone calls and emails

A replacement for statisticians

A replacement for new lab work

A source for HIV research news

“Shotgun science”

A new interactive paper format

A way to administer and evaluate study execution

Webex – live synchronous collaboration

Dataset? Datacube.

Data set-centric Data set AB Data set A Data set B

PTID- / visit-centric
(additional power of CDS)

Data attribute Participants with data attribute

Open? Mixed.

Private workspaces
cannot go away. But
fresh public data is
critical.

Whole HIV
vaccine

community

Research
networks

Ad hoc
groups

Me

Envisioned levels of data access

Collaborative? Communicative.

Ironically, the Collaborative DataSpace won’t be a place for rich
community collaboration after all.*

*But…

2. The process is
available to you.

Look for context: talk and observe before you start building

Validate assumptions: is the explicit ask really what’s needed?

Iterate at low fidelity: Test, fail, learn early and often

Prioritize: optimize for key tasks rather than exposing everything

Dialog

