Adjuvant Formulations: Applied LabKey Server in Process Development

Quinton Dowling

Infectious Disease Research Institute Formulations Department

IDRI Background

- Outline:
 - IDRI, LabKey and IDRI LabKey
 - Why a LIMS?
 - The power of relational databases
 - Custom views in R and SQL

IDRI Background

- Seattle-based not-for-profit
- R+D of products to prevent, detect and treat infectious diseases of poverty.
- IDRI integrates capabilities to bring scientific innovation from the lab to the people who need it most.

Infectious Disease Research Institute

IDRI Research Programs

- Antigen/Drug Discovery
- Preclinical Biology
- Clinical Development
- Process Development
- Adjuvant and Delivery Systems

Physical Reality IDRI LabKey Y ON OH Sample Sets Compounds 1* Compounds 117 Raw Material Lots (IRM#) Raw Materials Concentrations Formulations Assays **Formulations** Analysis HPLC Particle Size Visual

Infectious Disease Research Institute

LabKey: Tracking/Analysis

Individual Tracking and Analysis

Population Tracking and Analysis

What's the Goal?

Ask and Answer questions about...

– An individual.

- A class or group of individuals.
- The database.

Questions About Individuals

- What properties does an individual have?
- Individual behavior over time?

Individual history?

Individual Lot Tracking/Analysis

1080 IDRI LabKey Server Formulation QF055 FORMULATIONS HOME PAGE > EDIT OF055 > FORMULATIONS SAMPLE SET > OLD SAMPLE VIEW Information Concentrations Date of concentrations Mon Nov 30 00:00:00 PST 2009 Manufacture Type Emulsion Compound Name Lot Name Concentration Unit Lot Size 100 Notebook Page 7961 QF055 25.0 mM Terminated: Visual fail @ 25C (9 mo); Visual & PS fail @ 37C (3 mo), 60C (1 Comments mol QF055 25.0 mM Raw Materials IRM-0027, IRM-0097, IRM-0107, IRM-0110, IRM-0109, IRM-0108 OF055 1.8 %w/vol IRM-0107 IRM-0027 QF055 1.9 %w/vol IRM-0027 **Particle Size Stability** IRM-0097 QF055 10.0 %v/vol IRM-0097 aps ~ IRM-0107 QF055 1.8 %w/vol IRM-0107 REFRESH IRM-0108 QF055 0.09 %w/vol IRM-0108 IRM-0109 QF055 25.0 mM IRM-0109 m ... DM 1 wk 2 wk 1 mo 3 mo 6 mo 12 mo Me... IRM-0110 QF055 25.0 mM IRM-0110 四 ... 94.98 95.16 96.64 94.34 94.88 92 QF055 1.9 %w/vol IRM-0027 四. 94.49 96.68 95.52 94.51 146.24 92 QF055 0.09 %w/vol IRM-0108 E1 ... 96.55 105.24 103 92 QF055 10.0 %v/vol IRM-0097 12 92

Stability Charts

14 4 Page 1 of 1 👂 🗦 🥭

361.7 449.79

Displaying 1-4 of 4

Ouinton Dowling Admin - | Help | My Account | Sign Out

Material

IRM-0109

IRM-0110

Name

Infectious Disease Research Institute

Particle Size Data

• Dynamic light scattering

Particle Size Data

• Larger particles tend to aggregate

View Development

- One temperature
- Qualitative error
- Finitely scalable (view gets cluttered over time)

View Development

Particle Size Assay: QF325 (aps)

- Multiple temps
- Quantitative error
- Infinitely scalable

The True Power of LabKey

- Population Level Analysis
 - Relational Structure facilitates analysis of large datasets.
 - Data mining for generating and testing predictive models.

Infectious Disease Research Institute

White-boarding

- Identify goal
- Locate needed starting data
- Map out transformations
 SQL vs. R, or both?
- Consider UX

• Now start writing code.

Method: SQL

		rtogyne Batches > S HES> VIEW RUNS> VIE	Particle Size Runs ≻ w mesults≻ view copy-	TO-STUDY H	LISTORY		Quinton D	owling Admi	in - Help 1 Search 100	My Account	t Sign Out	Us vie	e S0 w th	QL t	o g	er ta	า ir
Time Label	Extraction Number	Test Measuring Number Temperatur	Z-Ave Pdl Mea Cour Rat	an Cumula nt te	ants Measurement D	ate and Time	Storage Temperature	Record Sam Nam	1 - 100 ple Analysis e Tool	Run IDRI Batch	Run Run 2- Error Ave	VIC	•• • • •				
T=0	1	1 25	1467.0 0.958 94.	.0 0.00	080 Tue, Oct 13, 20	109 at 09:59:34 AM	5C	1 DM :	1 nano	1003 1	146	ne	ada	∩t r	res	2	h
T=0	2	1 25	966.6 0.908 85.	3 0.008	856 Tue, Oct 13, 20	09 at 10:02:42 AM	5C	2 DM 3	2 nano	1003 1	146		JUUU	JU		IU	
T=0	3	1 25	1361.0 1.0 84	2 0.0	104 Tue, Oct 13, 20	09 at 10:05:50 AM	5C	3 DM 3	3 nano	1003 1	146						
T=0	1	2 25	893.3 0.757 360.	4 0.00	719 Tue, Oct 13, 20	09 at 10:09:24 AM	5C	4 DM :	1 nano	1003 1	146	/ •					
T=0	2	2 25	2299.0 1.0 377	0.008	864 Tue, Oct 13, 20	09 at 10:11:30 AM	5C	5 DM 3	2 nano	1003 1	146	lin	thin	000	$\sim c$	\ <i>(</i>	
T=0	3	2 25	2771.0 1.0 381	.9 0.0	126 Tue, Oct 13, 20	09 at 10:13:36 AM	5C	6 DM 3	3 nano	1003 1	146		11115	Cas	se c	1 (
T=0	1	3 25	875.2 0.738 255.	.9 0.0	128 Tue, Oct 13, 20	09 at 10:48:05 AM	5C	7 DM :	1 nano	1003 1	146	(~ `	1
T=0	2	3 25	873.4 0.729 277.	.1 0.0	012 Tue, Oct 13, 20	09 at 10:50:32 AM	5C	8 DM :	2 nano	1003 1	146	•					
T=0	3	3 25	1464.0 0.978 288.	4 0.03	171 Tue, Oct 13, 20	09 at 10:52:58 AM	5C	9 DM :	3 nano	1003 1	146						
🔲 1 dy	1	1 25	286.1 0.415 269	.6		6											
🔲 1 dy	2	1 25	277.7 0.408 269.	.9 🗲	• → C	🕓 idri.labl	key.con	n /quers	//Form	ulatior	ns/executeQu	ery.view?scher	naName=assa	y&query.que	eryName=Si	zeFail	
				Reported S	mulations > Query izeFail	DRI LabKey Ser	over assay Schen	na >									
					TüMean ZAve	Mean ZAv	e Sto	d Dev ZAve		Mean Pd I	Std Dev Pd I	Mean Cumulants	Std Dev Cumulants	Meanmean Count	Std Dev Mean Court	t Name	Analy
				1	0.0	0.	0	0.0		0.0	0.0	0.0	0.0	279.8333333333333333	11.78742267560380	G Q F065	aps
					0.0	0.	0	0.0	0.090333333	33333333	0.10414573122952919	0.0027966666666666856	0.004843968758500943	308.8	1.899999999985117	2 Q.F065	aps
				14	.917833333333334	126.188888888888	9 6.682145	3589588785	0.32644444	44444444	0.0361182471581578	0.00139899999999999999	5.082981408582967E-4	308.77777777777777777777	6.36039084114888	Q.F187	aps
				14	.917833333333334	136.877777777777777	8 9.509702	2647529963	0.31255555	55555556	0.040660518660953625	0.0013877777777777778	1.8410443895909795E-4	314.61111111111111	7.474699061535357	/ QF187	aps
				14	.91783333333333334	155.47777777777777777	6 11.344137	007478775	0.70055555	0.375	0.015297058540778948	0.001363333333333333333	2.1771541057077337E-4	305.0222222222222	10.791521878051425	QF187	aps
				14	291/8333333333333	14.91/8333333333333	4 12.971398 6 0.7362234	198369103	0.79900000	22222222	0.1/6890/3840462463	0.0050	0.0012903199590504829	312.40000000000000	9.151138362704714	0.5095	aps
				35	29111111111111	137,3333333333333333	7 3.602776	5706928677	0.449666666	66666666	0.02154065922853848	0.0029855555555555555555555555555555555555	3,9496835316262836E-4	192,577777777777778	5.62067117384089	6 OF096	nano
				36	.29111111111111	36.29111111111111	4 0.6190202	832793713	0.157888888	88888888	0.008313309275560028	3.6955555555556E-4	5.294835009495338E-5	388.97777777777776	64.8447911897669	4 Q.F096	nano
				36	.29111111111111	42.0333333333333	9 1.2472213	3560997802	0.26433333	33333333	0.026272609310838895	7.23888888888888898-4	3.3128592048427166E-4	277.6333333333334	121.88545852561733	Q.F095	nano
				36	.29111111111111	48.60333333333333	5 1.98246	5339464611		0.393	0.024494897427830432	0.00155855555555555	0.0012117651495969742	342.3888888888888	47.50882666527449	Q.F095	nano
				36	.29111111111111	43.471111111111	2 2.351934	823637314		0.275	0.029870554062487724	0.002690222222222222	0.004345864061892002	271.7888888888888	114.50377116545597	7 Q.F096	nano
				35	29111111111111	37 705555555555555	5 0.651/497 6 0.4312903	015/05/47 0	0.190111111	77777775	0.007688375063114099	5.103333333333333339E-4	a.e/603660153135E-5 1 399911995945135-4	231.3000000000066667	78 7521269554032	0.5095	nano
										• • erreral						- second	10

enerate a ains data ch goal graphic)

☆

TRUE

1 - 100 of 9,624 Next > Last >

Index Name

7 Aqueous QF187.7.5C TRUE

90 Aqueous QF187.90.5C TRUE

0 Aqueous QF187.0.5C FALSE

7 Liposome QF096.7.37C FALSE

7 Liposome QF096.7.60C TRUE

SQL View

0 Aqueous QF065.0.5C

7 Aqueous QF065.7.5C

14 Aqueous 0F187.14.5C

Quinton Dowling Admin + | Help | My Account | Sign Out

Sort Type

Order

Analysis Storage

	Method: R	
Metadata	Individual Metadata	
Formulation Question Comp	Jse R to find individuals in group	Group Result
	OF 476 0.2 %ex/vol 3984-0253 OF 359 1.0 %ex/vol 3984-0253 OF 178 0.32 %ex/vol 3984-0136	
R View	SQL View	
100000 100000 100000 100000 100000 100000 100000 100000 1000000	Filter View, pass group data to R for processing/display	
N(110) N(120) 1200 1200 1200 1200 1200 1270 1270 1270	1. 11 4111111111114 (J. 1997) 1. 10 411111111114 (J. 1997) 1. 10 701 10000000000000 (J. 2027) 1. 10 701 1000 1000 (J. 20000000000000 (J. 20000000000000 (J. 200000000000000 (J. 20000000000000 (J. 2000000000000 (J. 20000000000000 (J. 2000000000000 (J. 2000000000000 (J. 2000000000000 (J. 20000000000000 (J. 20000000000000 (J. 2000000000000 (J. 2000000000000 (J. 20000000000000 (J. 20000000000000 (J. 2000000000000 (J. 20000000000000 (J. 200000000000000000 (J. 20000000000000 (J. 2000000000000 (J. 2000000000000 (J. 20000000000000 (J. 20000000000000 (J. 20000000000000 (J. 20000000000000 (J. 20000000000000 (J. 20000000000000 (J. 2000000000000000 (J. 20000000000000 (J. 200000000000000 (J. 20000000000000000 (J. 20000000000000 (J. 200000000000000 (J. 20000000000000 (J. 2000000000000 (J. 20000000000000 (J. 20000000000000 (J. 20000000000000 (J. 20000000000000 (J. 200000000000000 (J. 20000000000000000000000000 (J. 2000000000000000000000000000000000000	fectious Disease Research Institute

Group Analysis

LabKey: Database Statistics

Challenges

- Well defined relationships
 A good model is priceless
- Know your data; be creative!
 - Carefully framed questions reveal powerful insight into your data

Conclusions

 LabKey at IDRI allows easy tracking of 14,000 "Samples."

 Also allows data mining to answer relevant questions about sample population behavior

Acknowledgements

IDRI:

Traci Mikasa Susan Lin Sandra Sivananthan Sarah Evans Millie Fung Lucien Barnes Chris Fox James Chesko Tom Vedvick **Darrick Carter** Steve Reed

Funding:

Bill and Melinda Gates Foundation

